On 1-Segment Center Problem

H. Imai
Kyushu University, Fukuoka 812, Japan
D. T. Lee¹ and C. D. Yang
Northwestern University, Evanston, IL

Absract

The location problem has recently been investigated from the computational-geometric point of view. The most fundamental problem is the 1-point-center problem, or the minimum enclosing circle problem, for n demand points in the plane, which is to find a location of a point facility p so that the maximum distance from p to the demand points is minimized. Megiddo and Dyer presented an O(n) optimal time algorithm for this problem. A variation of the 1-point center problem is the 1-line-center problem, which calls for the location of a line facility so that the maximum distance from the n given points to the line is minimized. This problem can be solved in $\Theta(nlogn)$ time, which is shown to be optimal in the worst case under the algebraic computation tree model of Ben-Or.

The complexities of the 1-point-center and 1-line-center problems are essentially different, and thus naturally arises the following problem, called the 1-segment-center problem: Given a set S of n points in the plane and a nonnegative constant L, locate a line segment of length L so that the maximum distance between the segment and the points in S is minimized. The distance between a point p and a segment l is the minimum distance between p and any point on l. The placement of a segment can be represented by (x, y, θ) , where (x, y) are the coordinates of one (designated) endpoint of the segment, and θ is the orientation of that segment with respect to the X-axis. Given a segment l of length L placed at $\hat{p} = (x, y, \theta)$, the locus of points equidistant from l at distance r is called a segment disk centered at \hat{p} of radius r, and is denoted as $l(L, \hat{p}, r)$.

It can be shown that there exist at most four points that determine the location of the segment and hence $O(n^4 \log n)$ time sufficies to find such a disk. However, for some restricted cases, more efficient algorithms can be obtained. For example, if the orientation θ is fixed, the problem can be solved in O(n) time by prune-and-search technique.

¹Supported in part by the National Science Foundation under the Grand DCR 8420814.