Construction of the Voronoi Diagram for over 10® Generators
in Single-Precision Arithmetic

Kokichi Sugihara and Masao Iri

Department of Mathematical Engineering and Information Physics, Faculty of Engi-
neering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113, Japan

Abstract

A number of “efficient” algorithms for constructing Voronoi diagrams have been pro-
posed. However, they are usually designed on the assumption that no numerical error
takes place in the course of computation. In real computation, on the other hand,
numerical errors cannot be avoided completely, so that it is difficult to judge always
correctly geometric relations among points, lines, etc. Misjudgement on geometric
relations often results in topological inconsistency, and causes a “theoretically cor-
rect algorithm” to fail in practice. Thus, there is an unsurmountable gap between
“theoretically correct” algorithms and “practically valid” computer programs.

To fill this gap this paper presents an algorithm that can construct Voronoi diagrams
stably in finite-precision arithmetic. The algorithm is based on an incremental-type
method, but differs from conventional ones in that the highest priority is placed on the
preservation of topological properties that the Voronoi diagrams should possess. From
a topological point of view (P1) Voronoi diagram is a planar graph which partitions
the plane into as many cells as the generators, and (P2) two cells share at most one
common edge. Each time a generator is added, the algorithm modifies the diagram
in such a way that the properties (P1) and (P2) may not be violated. Numerical
judgements are made only to select the most probable structure of the diagram as far
as (P1) and (P2) are preserved. Hence, however poor the precision in computation
may be, the algorithm carries out its task and gives an output that is topologically
consistent in the above sense, and the output converges to the true Voronoi diagram
as the precision becomes higher.

This algorithm was implemented in a FORTRAN program, and many computational
experiments have been done. For any set of generators given in the experiments, the
program carried out its task and gave an output that was consistent in the sense that
it satisfied the properties (P1) and (P2). The program did not fail even if hundreds
of points were given on the periphery of a circle as the generators (which is a typical
degenerate case for which a conventional algorithm usually does not work), or even if
all the results of floating-point computation in the program were replaced by random
numbers. Moreover, we carefully selected the FORTRAN codes for floating-point
computation in order to make the program as stable as possible also in the quantitative
sense. Actually, although all the floating-point numbers were represented in single
precision, the program could construct a diagram that is correct quantitatively as well
as qualitatively for 10° generators distributed uniformly over a unit square.

42



