Maintaining the minimal distance of a point set in less
than linear time*

Michiel Smid!
April 10, 1990

1 Introduction

Let V be a set of n points in d-dimensional space. We are interested in maintaining the
minimal distance of the points in V', when points are inserted and deleted in V. Distances
are measured in the (Minkowski) L;-metric, where 1 < ¢ < 00 is fixed throughout this paper.

Dobkin and Suri [2] considered the problem for a restricted type of updates, so-called
semi-online updates. They showed that in the plane, the minimal L,-distance can be main-
tained at the cost of O((logn)?) time per semi-online update. For arbitrary updates on the
minimal euclidean distance of a set of planar points, the best result is by Aggarwal et al.[1]:
they show that in a Voronoi diagram, points can be inserted and deleted in O(n) time. This
leads to an update time of O(n) for the minimal distance

In this paper, we give a dynamic data structure that maintains the minimal L;-distance
of a set of n points in d-dimensional space at the cost O(n’l 3]ogn) time per update.

This is the first data structure that can handle arbitrary updates in sublinear time. In
fact, for dimensions d > 4, the update time is even better than the previously best result
for semi-online updates. This best result was an update time of 0(n1~#1 (logn)?), where
B(d) = 1/(d(d+ 3) +4). See [2].

2 Computing the k smallest distances

Let V be a set of n points in d-space. These points define (3) distances, one for each pair of
points. Given an integer k, we want to compute the k smallest distances, sorted in increasing
order. We assume in this paper that all ('2') distances are different.

We need a lemma. A d-cube having side-lengths & is the hyper-cube that is defined by
the product of intervals [y : z1 + 6] X ... X [24 : z4 + 6], for some real numbers zy,...,Z4-

Lemma 1 Let §; be the k-th smallest L.-distance in the set V. Then any d-cube having
side-lengths &), contains at most 2(d + 1) Vk points of V.

Proof: Let I := 1/(d+ 1). Consider a d-cube C having side-lengths 16;. A d-cube having
side-lengths & can be covered by (d+ 1)? copies of C. This d-cube C has an L,-diameter
equal to d18j < 8. Therefore, cube C also has L;-diameter less than §,. Now assume that

*This work was supported by the ESPRIT II Basic Research Actions Program, under contract No. 3075
(project ALCOM). ,
tFachbereich Informatik, Universitit des Saarlandes, D-6600 Saarbriicken, West-Germany.

a d-cube having side-lengths §;, contains more than 2(d + 1)%vk points of V. Cover this
d-cube by (d + 1)? copies of C. Then one of these copies contains more than 2v/& points
of V. These points define more than k distances, that are all smaller than §;. This is a
contradiction. O

We need a data structure for the orthogonal range searching problem:

Theorem 1 (Mehlhorn [3]) Let V be a set of n points in d-space. A range tree with slack
parameter [(logn)/(3(d — 1))], storing V has size O(n), can be built in O(nlogn) time,
and has an amortized update time of O((logn)?). Given an azis-parallel hyperrectangle in
d-space, all A points of V that are in this rectangle, can be found in O(n'/3logn + A) time.

We denote by &(p,) the distance between p and g in the L,-metric. The algorithm for
computing the k smallest distances uses the following data structures:

1. There is a d-dimensional range tree with slack parameter—called the R-tree—that will
contain all points of V, that we have considered so far.

2. There is a balanced binary search tree—called the D-tree—that will contain the k
smallest distances found so far, in increasing order.

Invariant: Let V = {Xy,...,X,}. There is an integer i, such that [2\/1?] <i<n
The D-tree contains the k smallest distances that are defined by the points X;,...,X;. & =
maximum(D-tree). All points Xj,...,X; are stored in the R-tree.

Initialization: Set i := [2vE|, and build an R-tree for Xi,...,X:. Compute all di-
stances between these i points. The k smallest of these distances are stored in the D-tree,
in increasing order. Set & := maximal(D-tree).

The algorithm: For i = [2\/121 y+--yn — 1, do the following:

1. Let p := X;41, p = (p1,...,P4). Do a range query in the R-tree, with query-cube
[Pr— 8 : p1+ 8] X ... X [pa — 6k : pa + 6). For each reported point g for which
6(p,q) < &, do the following: Insert §(p,g) in the D-tree; delete §; from the D-tree;
set §; := maximum(D-tree).

2. Insert point p in the R-tree, and increase i by one.

Theorem 2 The algorithm computes the ordered sequence of k smallest distances in time
O(n*/*logn + nvklogk), using O(n + k) space.

Proof: After the initialization, the D-tree contains the k smallest distances that are defined
by the first ¢ points of V.. In each iteration of the algorithm, we have to update the D-tree.
All new distances that have to be inserted in the D-tree, are caused by point p = X;4; and
by points that lie in an L;-ball around p with radius §;. These points lie in a d-cube centered
at p, having side lengths 2§,. Hence, all new L;-distances that are less than the current
value of 8, are correctly inserted in the D-tree. For each inserted distance, another distance
is deleted. Hence, the number of distances stored in the D-tree remains equal to k. This
proves the correctness of the algorithm.

The initialization of the algorithm takes O(klog k) time. Consider the rest of the algo-
rithm. With each iteration, we do a range query in the R-tree. The query-rectangle is a
d-cube having side-lengths 24;, where §;, is the k-th smallest distance in the set of points that
are stored in the R-tree. By Lemma 1, at most O(v/k) points of the R-tree lie in this rectangle.

Hence, the query gives O(Vk) answers, which are computed in O(n'/*logn + V%) time. For
each answer, we spend O(logk) time in the D-tree. Therefore, in each iteration, we spend
O(n'/3logn+ Vklog k) time. For all iterations together, this takes O (n*/*log n+nvklogk)
time. O

An improved algorithm: Assume 1 <k < n. Compute for each point in V its nearest
neighbor, as in [4]. This gives n distances. Select the k smallest ones. This gives a set of
k pairs of points, and hence a set V' of at most 2k points. Then compute the k smallest
distances in this set V', using the algorithm given above.

Theorem 3 Let1 < k < n. The improved algorithm correctly computes the ordered sequence
of k smallest L;-distances in the set V, in O(nlogn + kvklogk) time and O(n) space.

Proof: The algorithm is correct, because the k smallest distances in the set V! are equal to
those in the set V. It takes O(nlogn) time to compute for each point in the set V' its nearest
neighbor. (See [4].) The time needed to select all points that will be put in the set V' is
bounded by O(klogk). We are left with a set of at most 2k points, for which we compute
the k smallest distances. By Theorem 2, this takes O(kv/klogk) time. O

Corollary 1 Given a set of n points in d-space, the ordered sequence of O(nz/s) smallest
distances can be computed in optimal O(nlogn) time and O(n) space.

3 Maintaining the minimal distance

Let V be a set of N points in d-space. Let k = |[N 2/3|. The data structure consists of the
following.

1. There is a balanced binary search tree—the D-tree—in which we store the I smallest
distances defined by the current set V, in sorted order. Here, [is an integer, such that
1 <1< k. § = minimum(D-tree), D = maximum(D-tree).

2. All points that are currently present are stored in a d-dimensional range tree of Theo-
rem 1, called the R-tree. '

Initialization: The D-tree is built using the improved algorithm of Section 2. We set
l := k; § := minimum(D-tree); D := maximum(D-tree). The R-tree is built using the
algorithm given in [3].

The delete algorithm: To delete a point p = (p1,...,Ppa), do the following:

1. In the R-tree, do a range query with query-cube [py—D : p1+D]X...X[pa— D : pa+D].
For each answer g, such that §(p,g) < D, delete §(p, g) from the D-tree; set I :=1—1;
set D := maximum(D-tree).

2. Set § := minimum(D-tree), and delete p from the R-tree.

The insert algorithm is the same as the algorithm in Section 2.

Rebuilding: If after an operation, the D-tree gets empty, or after [N bt 3| updates, start
over again: Set k = |M 2/ 3|, where M is the number of points that are present at that
moment, and build the structures anew. Then proceed performing updates as above.

Lemma 2 At any moment, the D-tree stores the | minimal distances of the current set of
points. Here, | satisfies 1< 1< k= |N?/3|.

Proof: After the initialization, the D-tree contains the k = | N2/3| smallest distances. If a
point p is inserted, new distances are introduced. All distances that have to be stored in the
D-tree are caused by p and by points that lie in an L,-ball around p with radius D. These
points surely lie in a d-cube centered at p, having side lengths 2D. Hence, all new distances
that are less than the current value of D, are correctly inserted in the D-tree. For each
inserted distance, another distance is deleted. Hence, the number of distances stored in the
D-tree—i.e., the value of I—does not change with an insertion. When a point p is deleted,
we delete all distances that are caused by p and that are smaller than the current value of
D. In this case, the D-tree will store less distances than before the deletion. All distances
that are stored, however, are the smallest ones in the current set of points. O

Lemma 3 If the data structure is rebuilt, O(N/3) updates have been performed.

Proof: After |[N1/3] updates, the D-tree will have been rebuilt. When a point is inserted,
the number of distances that are stored in the D-tree does not change. It follows from
Lemma 1 that with a deletion, O(N'/3) distances are deleted. Since initially, there are
| N3/3] distances stored in the D-tree, it takes Q(N/3) updates before this tree becomes
empty, i.e., before the data structure is rebuilt. O

Theorem 4 There ezists a data structure that maintains the minimal L;-distance of a set
of n points in d-space, at the cost of O(n*/3logn) amortized time per update. The data
- structure has size O(n) and can be built in O(nlogn) time.

Proof: Consider an update such that the data structure is not rebuilt. Since the number
of answers to each range query is bounded by O(N/3), such a query takes O(n!/3logn +
N1/3) time, if n is the current number of points. For each answer, we spend O(logk) =
O(log N) time in the D-tree. It takes O((logn)?) amortized time to update the R-tree.
Hence, if the structure is not rebuilt we spend amortized O(n'/3logn + N'/3log N) time in
an update. It takes ©(N1/3) updates, before we rebuild the structure. Therefore, the current
number of points—n—is always ©(N). Hence, in case no rebuilding is done, an update
takes amortized O(n!/3logn) time. The structure is rebuilt once every ©(n!/3) updates,
and this takes O(nlogn) time. It follows that the amortized update time is bounded above
by O(n'/logn) + O((nlogn)/n1/®) = O(n?/3logn). O

References

[1] A. Aggarwal, L.J. Guibas, J. Saxe and P.W. Shor. A linear-time algorithm for computing
the Voronos diagram of a convez polygon. Discrete Comput. Geom. 4 (1989), pp. 591-
604. '

" [2] D. Dobkin and S. Suri. Dynamically computing ‘the mazima of decomposable functions,
with applications. Proc. 30-th Annual IEEE Symp. on Foundations of Computer Science,
1989, pp. 488-493.

[3] K. Mehlhorn. Data Structures and Algorithms, Volume 8: Multi-Dimensional Searching
and Computational Geometry. Springer-Verlag, Berlin, 1984.

[4] PM. Vaidya. An optimal algorithm for the all-nearest-neighbor problem. Proc. 27-th
Annual IEEE Symp. on Foundations of Computer Science, 1986, pp. 117-122.

