Maintaining the minimal distance of a point set in less than linear time*

Michiel Smid[†]
April 10, 1990

1 Introduction

Let V be a set of n points in d-dimensional space. We are interested in maintaining the minimal distance of the points in V, when points are inserted and deleted in V. Distances are measured in the (Minkowski) L_t -metric, where $1 \le t \le \infty$ is fixed throughout this paper.

Dobkin and Suri [2] considered the problem for a restricted type of updates, so-called semi-online updates. They showed that in the plane, the minimal L_2 -distance can be maintained at the cost of $O((\log n)^2)$ time per semi-online update. For arbitrary updates on the minimal euclidean distance of a set of planar points, the best result is by Aggarwal et al.[1]: they show that in a Voronoi diagram, points can be inserted and deleted in O(n) time. This leads to an update time of O(n) for the minimal distance

In this paper, we give a dynamic data structure that maintains the minimal L_t -distance of a set of n points in d-dimensional space at the cost $O(n^{2/3} \log n)$ time per update.

This is the first data structure that can handle arbitrary updates in sublinear time. In fact, for dimensions $d \geq 4$, the update time is even better than the previously best result for semi-online updates. This best result was an update time of $O(n^{1-\beta(d)}(\log n)^2)$, where $\beta(d) = 1/(d(d+3)+4)$. See [2].

2 Computing the k smallest distances

Let V be a set of n points in d-space. These points define $\binom{n}{2}$ distances, one for each pair of points. Given an integer k, we want to compute the k smallest distances, sorted in increasing order. We assume in this paper that all $\binom{n}{2}$ distances are different.

We need a lemma. A d-cube having side-lengths δ is the hyper-cube that is defined by the product of intervals $[x_1:x_1+\delta]\times\ldots\times[x_d:x_d+\delta]$, for some real numbers x_1,\ldots,x_d .

Lemma 1 Let δ_k be the k-th smallest L_t -distance in the set V. Then any d-cube having side-lengths δ_k contains at most $2(d+1)^d \sqrt{k}$ points of V.

Proof: Let l := 1/(d+1). Consider a d-cube C having side-lengths $l \, \delta_k$. A d-cube having side-lengths δ_k can be covered by $(d+1)^d$ copies of C. This d-cube C has an L_1 -diameter equal to $d \, l \, \delta_k < \delta_k$. Therefore, cube C also has L_t -diameter less than δ_k . Now assume that

^{*}This work was supported by the ESPRIT II Basic Research Actions Program, under contract No. 3075 (project ALCOM).

†Fachbereich Informatik, Universität des Saarlandes, D-6600 Saarbrücken, West-Germany.

a d-cube having side-lengths δ_k , contains more than $2(d+1)^d\sqrt{k}$ points of V. Cover this d-cube by $(d+1)^d$ copies of C. Then one of these copies contains more than $2\sqrt{k}$ points of V. These points define more than k distances, that are all smaller than δ_k . This is a contradiction. \square

We need a data structure for the orthogonal range searching problem:

Theorem 1 (Mehlhorn [3]) Let V be a set of n points in d-space. A range tree with slack parameter $\lceil (\log n)/(3(d-1)) \rceil$, storing V has size O(n), can be built in $O(n \log n)$ time, and has an amortized update time of $O((\log n)^2)$. Given an axis-parallel hyperrectangle in d-space, all A points of V that are in this rectangle, can be found in $O(n^{1/3} \log n + A)$ time.

We denote by $\delta(p,q)$ the distance between p and q in the L_t -metric. The algorithm for computing the k smallest distances uses the following data structures:

- 1. There is a d-dimensional range tree with slack parameter—called the R-tree—that will contain all points of V, that we have considered so far.
- 2. There is a balanced binary search tree—called the D-tree—that will contain the k smallest distances found so far, in increasing order.

Invariant: Let $V = \{X_1, \ldots, X_n\}$. There is an integer i, such that $\left\lceil 2\sqrt{k}\right\rceil \leq i \leq n$. The D-tree contains the k smallest distances that are defined by the points X_1, \ldots, X_i . $\delta_k = \max(D-\text{tree})$. All points X_1, \ldots, X_i are stored in the R-tree.

Initialization: Set $i := \lceil 2\sqrt{k} \rceil$, and build an R-tree for X_1, \ldots, X_i . Compute all distances between these i points. The k smallest of these distances are stored in the D-tree, in increasing order. Set $\delta_k := \text{maximal}(D\text{-tree})$.

The algorithm: For $i = \left\lceil 2\sqrt{k} \right\rceil, \ldots, n-1$, do the following:

- 1. Let $p:=X_{i+1}$, $p=(p_1,\ldots,p_d)$. Do a range query in the R-tree, with query-cube $[p_1-\delta_k:p_1+\delta_k]\times\ldots\times[p_d-\delta_k:p_d+\delta_k]$. For each reported point q for which $\delta(p,q)<\delta_k$, do the following: Insert $\delta(p,q)$ in the D-tree; delete δ_k from the D-tree; set $\delta_k:=\max(D-tree)$.
- 2. Insert point p in the R-tree, and increase i by one.

Theorem 2 The algorithm computes the ordered sequence of k smallest distances in time $O(n^{4/3} \log n + n\sqrt{k} \log k)$, using O(n+k) space.

Proof: After the initialization, the D-tree contains the k smallest distances that are defined by the first i points of V. In each iteration of the algorithm, we have to update the D-tree. All new distances that have to be inserted in the D-tree, are caused by point $p = X_{i+1}$ and by points that lie in an L_t -ball around p with radius δ_k . These points lie in a d-cube centered at p, having side lengths $2\delta_k$. Hence, all new L_t -distances that are less than the current value of δ_k , are correctly inserted in the D-tree. For each inserted distance, another distance is deleted. Hence, the number of distances stored in the D-tree remains equal to k. This proves the correctness of the algorithm.

The initialization of the algorithm takes $O(k \log k)$ time. Consider the rest of the algorithm. With each iteration, we do a range query in the R-tree. The query-rectangle is a d-cube having side-lengths $2\delta_k$, where δ_k is the k-th smallest distance in the set of points that are stored in the R-tree. By Lemma 1, at most $O(\sqrt{k})$ points of the R-tree lie in this rectangle.

Hence, the query gives $O(\sqrt{k})$ answers, which are computed in $O(n^{1/3}\log n + \sqrt{k})$ time. For each answer, we spend $O(\log k)$ time in the D-tree. Therefore, in each iteration, we spend $O(n^{1/3}\log n + \sqrt{k}\log k)$ time. For all iterations together, this takes $O(n^{4/3}\log n + n\sqrt{k}\log k)$ time. \square

An improved algorithm: Assume $1 \le k \le n$. Compute for each point in V its nearest neighbor, as in [4]. This gives n distances. Select the k smallest ones. This gives a set of k pairs of points, and hence a set V' of at most 2k points. Then compute the k smallest distances in this set V', using the algorithm given above.

Theorem 3 Let $1 \le k \le n$. The improved algorithm correctly computes the ordered sequence of k smallest L_t -distances in the set V, in $O(n \log n + k\sqrt{k} \log k)$ time and O(n) space.

Proof: The algorithm is correct, because the k smallest distances in the set V' are equal to those in the set V. It takes $O(n \log n)$ time to compute for each point in the set V its nearest neighbor. (See [4].) The time needed to select all points that will be put in the set V' is bounded by $O(k \log k)$. We are left with a set of at most 2k points, for which we compute the k smallest distances. By Theorem 2, this takes $O(k\sqrt{k} \log k)$ time. \square

Corollary 1 Given a set of n points in d-space, the ordered sequence of $O(n^{2/3})$ smallest distances can be computed in optimal $O(n \log n)$ time and O(n) space.

3 Maintaining the minimal distance

Let V be a set of N points in d-space. Let $k = \lfloor N^{2/3} \rfloor$. The data structure consists of the following.

- 1. There is a balanced binary search tree—the D-tree—in which we store the l smallest distances defined by the current set V, in sorted order. Here, l is an integer, such that $1 \le l \le k$. $\delta = \min (D-tree)$, $D = \max (D-tree)$.
- 2. All points that are currently present are stored in a d-dimensional range tree of Theorem 1, called the R-tree.

Initialization: The D-tree is built using the improved algorithm of Section 2. We set l := k; $\delta := \min(D-\text{tree})$; $D := \max(D-\text{tree})$. The R-tree is built using the algorithm given in [3].

The delete algorithm: To delete a point $p = (p_1, \ldots, p_d)$, do the following:

- 1. In the R-tree, do a range query with query-cube $[p_1-D:p_1+D]\times \ldots \times [p_d-D:p_d+D]$. For each answer q, such that $\delta(p,q) \leq D$, delete $\delta(p,q)$ from the D-tree; set l:=l-1; set $D:=\max (D-tree)$.
- 2. Set $\delta := \min (D-tree)$, and delete p from the R-tree.

The insert algorithm is the same as the algorithm in Section 2.

Rebuilding: If after an operation, the D-tree gets empty, or after $\lfloor N^{1/3} \rfloor$ updates, start over again: Set $k = \lfloor M^{2/3} \rfloor$, where M is the number of points that are present at that moment, and build the structures anew. Then proceed performing updates as above.

Lemma 2 At any moment, the D-tree stores the l minimal distances of the current set of points. Here, l satisfies $1 \le l \le k = \lfloor N^{2/3} \rfloor$.

Proof: After the initialization, the D-tree contains the $k = \lfloor N^{2/3} \rfloor$ smallest distances. If a point p is inserted, new distances are introduced. All distances that have to be stored in the D-tree are caused by p and by points that lie in an L_t -ball around p with radius D. These points surely lie in a d-cube centered at p, having side lengths 2D. Hence, all new distances that are less than the current value of D, are correctly inserted in the D-tree. For each inserted distance, another distance is deleted. Hence, the number of distances stored in the D-tree—i.e., the value of l—does not change with an insertion. When a point p is deleted, we delete all distances that are caused by p and that are smaller than the current value of p. In this case, the D-tree will store less distances than before the deletion. All distances that are stored, however, are the smallest ones in the current set of points. \square

Lemma 3 If the data structure is rebuilt, $\Theta(N^{1/3})$ updates have been performed.

Proof: After $\lfloor N^{1/3} \rfloor$ updates, the D-tree will have been rebuilt. When a point is inserted, the number of distances that are stored in the D-tree does not change. It follows from Lemma 1 that with a deletion, $O(N^{1/3})$ distances are deleted. Since initially, there are $\lfloor N^{2/3} \rfloor$ distances stored in the D-tree, it takes $\Omega(N^{1/3})$ updates before this tree becomes empty, i.e., before the data structure is rebuilt. \square

Theorem 4 There exists a data structure that maintains the minimal L_t -distance of a set of n points in d-space, at the cost of $O(n^{2/3} \log n)$ amortized time per update. The data structure has size O(n) and can be built in $O(n \log n)$ time.

Proof: Consider an update such that the data structure is not rebuilt. Since the number of answers to each range query is bounded by $O(N^{1/3})$, such a query takes $O(n^{1/3}\log n + N^{1/3})$ time, if n is the current number of points. For each answer, we spend $O(\log k) = O(\log N)$ time in the D-tree. It takes $O((\log n)^2)$ amortized time to update the R-tree. Hence, if the structure is not rebuilt we spend amortized $O(n^{1/3}\log n + N^{1/3}\log N)$ time in an update. It takes $\Theta(N^{1/3})$ updates, before we rebuild the structure. Therefore, the current number of points—n—is always $\Theta(N)$. Hence, in case no rebuilding is done, an update takes amortized $O(n^{1/3}\log n)$ time. The structure is rebuilt once every $\Theta(n^{1/3})$ updates, and this takes $O(n\log n)$ time. It follows that the amortized update time is bounded above by $O(n^{1/3}\log n) + O((n\log n)/n^{1/3}) = O(n^{2/3}\log n)$. \square

References

- [1] A. Aggarwal, L.J. Guibas, J. Saxe and P.W. Shor. A linear-time algorithm for computing the Voronoi diagram of a convex polygon. Discrete Comput. Geom. 4 (1989), pp. 591-604.
- [2] D. Dobkin and S. Suri. Dynamically computing the maxima of decomposable functions, with applications. Proc. 30-th Annual IEEE Symp. on Foundations of Computer Science, 1989, pp. 488-493.
- [3] K. Mehlhorn. Data Structures and Algorithms, Volume 3: Multi-Dimensional Searching and Computational Geometry. Springer-Verlag, Berlin, 1984.
- [4] P.M. Vaidya. An optimal algorithm for the all-nearest-neighbor problem. Proc. 27-th Annual IEEE Symp. on Foundations of Computer Science, 1986, pp. 117-122.