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Abstract

Given sets A = {a;,...,a,,} and B = {b,...,bnp} of points in the plane,
n = ns + ng. A ham-sandwich cut is a line h with the property that at most
half of the points in A and half of the points in B lie on the same side of h. For
the case where the convex hulls of A and B do not intersect, Megiddo gave an
algorithm to compute h that runs in time O(n). Edelsbrunner and Waupotitsch
modified Megiddo’s algorithm for the general case so it can compute h in time
O(nlogn). Here we give a linear time algorithm and resolve the question regarding
the complexity of computing h in two dimensions.

1The author expresses gratitude to the NSF DIMACS Center at Rutgers
2Research Supported in Part by NSF grant CCR-8902522



1 Introduction and Summary

Suppose that we are given two sets of points in the plane, 4 = {a1,...,a,,} and B =
{b1,...,bnp}, n =n4s +np. Aline £ bisects a set, say A, if neither of the open halfspaces
defined by £ contain more than n,/2 points of A. A ham-sandwich cut is a line h
that simultaneously bisects A and B. The ham sandwich theorem (see for example [3])
guarantees the existence of such a cut.

A special case of this problem arises in the question posed by Willard [7]. Given a
set S = {p1,...,Pm}, he asked for two lines, h and h’, which divide the plane into four
quadrants, none of which contains more than m/4 points of S. It is trivial to obtain a
line A’ that bisects S (into A, points on the left of A’ and B = S\A, of points on the
right). The other line & is then a ham-sandwich cut. Cole, Sharir and Yap [2] considered
this separated case of the ham sandwich problem, where the convex hulls of A and B do
not intersect. They gave an O(n(logn)?) algorithm, and conjectured that O(nlogn) was
possible. In fact Megiddo [6] showed how to compute & in the separated case in linear
time. Throughout we use a model of computation where any arithmetic operation or
comparison is charged unit cost.

Edelsbrunner and Waupotitsch [4] modified Megiddo’s algorithm for the general case.
Their algorithm can compute k in time O(nlogn). In this paper we give a linear time -
algorithm for the general case and thus settle the question regarding the complexity of
two dimensional ham sandwich cuts.

It is convenient to look at the dual of our problem. We use the transformation T
which maps the point (z,y) to the line £ whose equation is v = zu + y and the line
with equation y = mz + b to the point (—m,b). It is familiar that point-line incidence
is preserved under this mapping. Moreover a point P = (z,¥), vertically above a line
¢, maps to a line vertically above T'(¢). In the dual, we have an arrangement of n lines,
4,...,4n, ny of them from set A (call them aj,...,a,,) and ny of them from B (call
then b],...,b, ). The dual of a ham sandwich cut & is a point h* = T(h) which has half
of the A lines and half of the B lines above it.

We make a general position assumption, namely that no line is vertical, no two are
parallel, and no three intersect in a common point. Thus we have N = ( g intersection

points £;N¢; = (z;j,y:;). We write t; < ... < ty for the x-coordinates of these points,
in order. An important idea is the k-level in a line arrangement. This is defined as the
continuous, piecewise linear function L; whose segments always coincide with one of the
lines in the arrangement. At a given z, Lj is £, if line q has k — 1 lines above it at that
z. When j = |(n + 1)/2], L; is called the median-level of the arrangement.

Suppose that both n, and np are odd. For z < t; (to the left of all intersections)
and for z > ty (to the right of all intersections) the median level of the A’s is the same
A line, say a; similarly the B median level outside [t1,,] is, say b;. Assume that the



slope of a; is less than that of b; (the opposite case is similar). Then the A’s median
level is above that of the B's at the left of the arrangement, and below it at the right.
By continuity the median levels must intersect at some point h*, a ham sandwich cut.
A brute force, O(n®) algorithm would test each intersection a] N bj of an A line with a
B line to see whether this point is a ham sandwich cut. In the next section we present
some of the ideas involved in quickly finding a pair of lines a; and b; whose intersection
point is h*.

2 The Method

We have n lines, n4 of them from A and np of them from B. We seek a certain pair a;
and b; whose intersection, h*, is an intersection point of the median levels of the A's and
B’'s. We describe a linear time algorithm for this task. The main idea is a familiar one.
In time O(n) we discard a fixed fraction, a, of the lines from further consideration. This
leaves (1 — a)n lines among which h* is the intersection point of (say) the p and g levels
of the remaining A and B lines (p and g no longer necessarily corrrespond to medians).

A key ingredient is the following result on the complexity of approximating t, the kth
smallest intersection point (x-coordinate) in an arrangement of n lines. An intersection
point t; is called an e-approzimation of t, if |j — k| < eN. We have

Lemma 1 (Matoudek) Given n lines in general position, a rank, k,1 < k < N, and ¢ >
0, an ¢ approzimation of the k** intersection point, tx, may be found in time O(nlog e™).

This statement was first proposed in the important paper of Matousek [5]. The special
case where ¢ = ¢/n was proved in [1] and Lemma 1 is actually implicit from the methods
of that paper.

Inductively we are trying to find an intersection of the p level of the A-lines and the ¢
level of the B-lines, knowing in advance that the levels do intersect. Start by considering
only the A lines. We will approximate ¢, < tj, ..., where

) €3
Ji= [1'2-NAJ ,

i=1,...,|2/€?], and € a constant to be chosen later (N, denotes the number of pairs of
Alines). We do this by computing the sequence t} , ¢, ..., where t}, is an €2/4 approxima-
tion to t;;. By Lemma 1, each approximation may be computed in time O(n4loge™?),and
therefore the entire sequence in O((n4/€?)loge!). By definition of é—approximations,
"there is at least one, and at most e2N, A-intersections between successive t; thus

2!
' !
t:’n <t_,-3....

At each vertical line z = ¢}, there are n4 intercepts (intersections of A-lines in the
arrangement with the vertical line). We select three intercepts at each vertical line, the



p** largest intercept, the (p — eny)** largest, and the (p + eny)™ largest. This may be
done in time O(n4/e?) overall.

Consider adjacent vertical lines z = ¢t;, and z = t;.,, and the intercepts we have
selected. Connect the two (p — eny)** intercepts by a straight line £, and the two (p +
ena)** intercepts by another straight line, £;. This gives the trapezoidal region T'rap;

(the first and last regions are unbounded). It is easy to prove
Lemma 2 Each region Trap; contains the p level of the A-lines.

Here is a sketch showing that in the bounded case, the p level of the A-lines is below
¢, in Trap;. A similar argument shows it is above £;. Both arguments can be modified
for the unbounded regions. At both z = t;, and z = ¢;  there are exactly p — eng — 1
A-lines above {;. Between z =t} and z = ¢}, | A-lines can cross £, from below (greater
slope) or from above (smaller slope). Call these collections U and D, respectively. When
a line in U crosses £,, one additional A-line is above £;; when a line in D crosses, one
fewer A-line is above. Therefore |U| = |D|. Each line in U intersects each line in D
between ¢}, and ¢}, . This gives '

[UIID| = |U[* < €*Nuy,

the right hand side being a bound on the total number of intersections of A-lines in
(t55t5;,,)- Therefore |[U| < en4 and the p level of the A’s remains below ;.

This argument also shows that at most |U| + |D| < 2en4 A-lines meet £;. The same
is true for £;. Clearly no more than 2en4 A-lines can meet either of the vertical segments
of T'rap;. This proves

Lemma 3 At most 4en, A-lines meet any region Trap.-.

From now on ¢ = 1/8. One of the regions must contain the intersection of the p level
of the A lines with the g level of the B lines. The first (left most) such region may be
found in time O(n/e?) by selecting the intercepts of these levels at successive vertical
lines z = ¢}, and noticing whether or not they reverse their relative order. When the
appropriate trapezoid has been found the (at least) n4/2 A-lines which avoid this region
may be discarded. Assuming r of them were above Trap;, the value of p is decreased
by r for the next iteration. The next iteration is similar except that it processes the
remaining B lines, and we continue in this way, alternating between the A and B sets
and eliminating at least half of the remaining lines in that set. Finally, these ideas
combine to prove

Proposition 1 A planar ham sandwich cut may be found in linear time.



The ham sandwich theorem guarantees the existence of a d—1 dimensional hyperplane
in R? that simultaneously bisects d sets of points, n points in all. When d = 3 we can
generalize Megiddo’s result and find a cut in the separated case in quadratic time. It
would be consistent with the present result if O(n9-!) turned out to be the complexity
in the general case. We can only establish this bound up to logarithmic factors.
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