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1 Introduction

In 1982, Comer and O’Donnell formulated and solved a geometric problem applicable to the
choice of good hashing functions. Given a set S of points in the plane, they wished to find a
line / such that the span of the orthogonal projection of S on ! (the.ma.ximum distance between
projected points) divided by the resolution (the minimum distance between distinct projected
points) is minimized [CO82]. In their paper, Comer and O’Donnell presented an O(n?logn)
time and O(n?) space algorithm to solve this geometric problem.

Recently, Huttenlocher and Kedem considered the problem of finding the minimum Hausdorff
distance between two sets of points on the real line, over all possible translations of the sets
[HK90]. Given two (static) sets of points A and B, the Hausdorff distance between them is
defined as

maxtpgr s O g plp e O,

where 6(a,b) is simply the Euclidean distance between @ and b. This minimum Hausdorff
distance, together with the amount by which the sets must be translated to achieve it, provide
information which may be useful in solving certain clustering problems. Their solution requires
O(ngnplogngny) time and O(ngny) space, where n, and n; are the cardinalities of A and B,
respectively. |

On the surface, these problems may seem quite unrelated. However, one characteristic



common to both is that the minima of distance functions are being maximized (or maxima are
being minimized). Such problems are often referred to as “minimax” problems in the literature.
In this paper, we shall show how these and other minimax problems may be transformed into
one of a family of minimax problems on line arrangements. By providing a unified solution to
this family of problems, a wide range of minimax problems may be solved. These will be seen
to have applications in such areas as hashing, clustering, and VLSI design.

The unified approach involves sweeping line arrangements while simultaneously constructing
upper and lower envelopes of a quadratic number of “V-shaped” functions. Although these
envelopes ordinarily require storage space quadratic in the input size, only a portion of each
envelope will be kept on hand at any given time. In this way, the space complexities of the
problems (including those of [CO82] and [HK90] mentioned earlier) may be made linear in the
input size, without any increase in asymptotic worst-case time complexity.

In this extended abstract, we will not be able to give the details of our method. Instead, in
the next section, we state the general line arrangement problem, and give a sketch of its solution.
In Section 3, we show how the problems stated earlier may be expressed as a problem on line

arrangements.

2 The Line Arrangement Problem

Let L = {l1,l2,...,In} be a set of n distinct non-vertical lines in the plane, where each l; is
parameterized as /i(t) = a;t + b;, for all 0 < i < n. Let us also consider a collection of “colours”
Cc={12,... ,%—} such that each line I of L is assigned some colour x(l.) € C. This assignment
of colours to lines partitions L into the disjoint subsets L; = {I € L| x(I) = j}, forall 0 < j<e
Let n; be the cardinality of L;.

The main focus of our paper will be the minimization (or maximization) over of functions

of the form

F(t) = .f(t, ¢1(t)’ ¢2(t)7 EERE) ¢m(t))1

where each ¢y is the upper or lower envelope of a collection of at most n? “V-shaped” functions
of t, expressed in terms of the values of the lines of L evaluated at t. The function F must be
one whose local maxima and minima may be computed analytically (the function need not be
bounded).

One of the ways in which such problems may be solved is to represent each of the ¢ as a

chain of line segments, and then merge these chains while simultaneously computing the local
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minima (or maxima) of F. In the full paper, we shall see that the construction of these functions
may be performed by way of a line sweep of the line arrangement induced by L. Since some
of these functions may require Q(n?) storage, we shall also describe a general method by which
these functions may be constructed for intervals of values of ¢, such that the size of each function
over the interval is linear in n. By processing a linear number of such intervals, we may evaluate
F at all local minima (or maxima) in O(I(n)log I(n)+ nlogn) time and O(n) space, where I(n)
is the number of intersections between lines of the arrangement.

3 Applications

There are of course a great many functions ¢ from which to choose; the most interesting of
these involve the vertical spacings of the lines of L. As the value of ¢ varies between —oo and oo,
the vertical ordering and spacing of the lines also varies. Let L* = (I,1%,...,I%) be the sequence
of lines of L sorted in increasing order of their values at t. for-saeh—eolous—s. Obviously, for
every ¢, ¢ < j implies that [}(t) < I(2).

Consider now the following functions of :

#a(t) = mm {I (1) = (1)}

pp(t) = lﬁ.(t)—li(t)

pc(t) = Dax  min {l5@®) - E@)}
x(I)#x(1t)

¢4(t) =  min {|I}(2) - L))}

x()#x(12)

It may easily be verified that each is the upper or lower envelope of a subset of the set of functions
V = {v;;]v;;(t) = li(t) - 1;(2)]}, for 1 < 4,5 < n. The first of these functions may be interpreted
as the minimum vertical distance between two consecutive lines of L evaluated at ¢; the second
ma,y be interpreted as the maximum vertical distance between any two lines. Function ¢ gives
the maximum vertical distance between a line and the closest line of a differing colour. Function
¢4 determines the minimum vertical distance between two lines of differing colours.

The two problems stated in the introduction may be stated in terms of these functions of ¢.
For a set § consisting of the points (z;,%;) for 1 < i < n, Comer and O’Donnell’s problem may

be transformed into the following:
b
®a

minimize,



where L = {l1,ls,...,In} such that l;(t) = zit + yi. This problem may thus be solved in
O(n?logn) time and O(n) space.

The problem of finding the minimum Hausdorff distance between two sets A= {ay,a2,...,8n,}

and B = {by,bs,...,bn,} and on the line, under translation, may be expressed as

maximize; dc
where L = LU La, L1 = {l11,l1.2,-- > 11,0, } Such that l13(t) = ai, and Lz = {l23,2.2,-- Hlang}
such that lp;(t) = t + b;. Since there are only n.ns mutually-intersecting pairs of lines of L, a
solution may be obtained in O(nqnslog nans) time and O(nq + np) space.

Another problem which may be cast into the same form shall be seen in the full paper to
have possible applications in VLSI design. Simply stated, given two sets of planar points A =
((Za1sYa1)s (T2, Va2)s - » (Taynas Yaina)} a0d B = {(28,1,Y,1), (2,2, U2)s - - +» (Tb,m Yoims )} find
a line I such that the minimum distance between any point of the orthogonal projections of A
on /, and any point of the orthogonal projection of B on [, is maximized. This problem may be
viewed as that of connecting one set of terminals (the points of A) by parallel wires leading in
one direction, and connecting the remaining terminals (the points of B) by parallel wires leading
in the opposite direction, such that the minimum distance between wires leading to terminals
of different sets is maximized. V

In the arrangement setting, this routing problem becomes
maximize; -—¢—d—
V1+t?

where L = L, U Ly, L1 = {la,li2,---:l1ne} such that l1i(1) = Zait + Yasis and L, =
{la1,l22,---sl2,n,} such that l;(t) = zpit + pi- If n = ng + np, we may obtain a solution
in O(n%logn) time and O(n) space.

In addition to these problems, several other problems related to hashing and clustering may

also be solved under the same framework.
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