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1 Introduction

Triangulation of a point set or a region in the plane is a very important problem since it has a number of applications
in several areas. It requires that any two triangles either do not meet or meet at a vertex or at a full side. Though
a lot of literature is available today on the topic, very few of them are addressed to the problem of guaranteed
quality triangulation where the triangles are guaranteed to have some desirable qualities such as good bounds on
their maximum and minimum angles. In fact, in finite element method, it is often desirable that the triangles have
no obtuse angles. See [2]. Such triangles are called nonobtuse triangles. A triangulation which have only nonobtuse
triangles is called a nonobtuse triangulation. It is known that if a given set of points admits a nonobtuse triangulation,
the delaunay triangulation of the point set is nonobtuse. See [4].

In finite element method, the error bound is kept low if the triangles are as close as equilateral triangles. In [1]

Babuska et. al showed that in finite element approximations with triangular elements, the smaller the maximum angle
is, the lower the error bound becomes. Small angles are also not desirable since they yield ill-conditioned matrices [5].
In [2] Baker et. al have given a method for nonobtuse triangulation of a polygonal region. Their algorithm provides a
tedious method for triangulating the regions near the boundary and do not work if the triangulation needs to include
some prespecified input points inside the polygon, a requirement that often arises in interpolation techniques used
for geological data. In [3], Chew has given an algorithm based on delaunay triangulation which triangulates a planar
region and produces triangles with some guaranteed qualities.
Results: We give an algorithm for triangulating a planar point set which may or may not be given inside a polygonal
boundary. If the point set is not given inside a polygon, we consider the convex hull of the given point set as the
polygon containing it. In Our first algorithm given in Section 3, we follow the approach of [3]. It produces triangles
with the following ensured qualities. (i) All obtuse triangles have angles between 30° and 120° and have sides of
length in between d and 2d for some d. (ii) All triangles with a boundary edge as one of the sides, have angles in
between 38.9° and 97.2° and have sides of length in between d and 1.5d.

The second algorithm given in Section 4 produces a triangulation in which all obtuse triangles have angles in
between 12° and 101°. This algorithm is much more simpler than the one given in [2] and achieves reasonably good
bounds on the angles. Moreover, it works not only for triangulating a polygon but also a point set given inside a
polygon.

2 Deﬁhitions and Geometric Lemmas

For any triangulation of a set of points, we call those edges as the boundary edges which have only one triangle
incident on them. For a given set S of points in a polygonal region, the triangulation of S includes the edges of the
given polygon. These edges appear as boundary edges of the triangulation. If the set S is not given inside a polygon,
the boundary edges of the triangulation of S are the edges of the convex hull of the given point set.

A triangle in any triangulation is called a boundary triangle if it has a boundary edge as its side. The triangles
which are not boundary triangles are called inner triangles.

A triangle in any triangulation T is said to have good circumcenter if and only if the line segments joining the
circumcenter and three vertices of the triangle do not intersect any boundary edge of T. Conversely, a triangle is
said to have bad circumcenter if and only if one of the line segments joining the circumcenter to its vertices intersect
a boundary edge of T.

The following lemmas are used in the next section. Proofs appear in the full paper.
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Lemma 2.1: Let 5;p; and PzPy be two chords drawn in a semicircle U. Further, let pzpy lie in between P;p; and a
diameter of U. Then, |5, > |7ip;1

Lemma 2.2: Let 5;p; be a chord in a circle C and pp, be a point which lies outside C and on the same side of 7;p;
as the center of C does. Further, let /pmpip; and £p;p;jpm be nonobtuse. Then center of C lies inside Ap;p;pm.
Lemma 2.3: Let G = Ap;p;pr be an obtuse triangle with bad circumcenter in any delaunay triangulation. Let p;pr
be the largest side of Ap;p;px. There must exist a boundary edge which is greater than or equal to p;pk.

3 Using Delaunay Triangulation

Algorithm: Let S be a set of points given in the plane. In what follows, by delaunay triangulation of a point set S
inside a polygon we mean the constrained delaunay triangulation of S [6]. Algorithm TRI1 as given below produces
a guaranteed quality triangulation.

Two input conditions must be satisfied for the algorithm TRI1. Later, we will see how these conditions are met.
Algorithm TRII:
Input Conditions: Let d be a quantity, such that no two given points are closer than d and no boundary edge is
greater than 1.5d and less than d.

begin
Construct the delaunay triangulation of the given set of points.

Repeat
Add the circumcenter v; of G = Apipjpe satisfying following properties.
1. G is obtuse

2. v; is at a distance of at least d from all the three points p;, p;, Pk-
3. vy is a good circumcenter of Ap;p;pk.
Update the current triangulation.

Until there is no such circumcenter.

end

The proofs of some of the following lemmas are omitted here. They appear in the full paper.

Lemma 3.1: Algorithm TRI1 terminates.

Proof: By the empty circle property of the delaunay triangulation, the added points are at a distance of at least d

from all other points. Since, there can be finitely many such points in a bounded region, algorithm TRI1 can add

finite number of new points and thus terminates. .

Lemma 3.2: Each obtuse triangle G with good circumcenter produced by TRI1 have the following criteria. G has

no angles greater than 120° and less than 30° and moreover, G has no edge greater than 2d and less than d.
Certainly, circumradius of G is less than d. Otherwise, its circumcenter would have been introduced by TRI1.

The sides of G are of length greater than or equal to d. It is easy to prove that a triangle with all its sides greater

than its circumradius must have angles in between 30° and 120°.

Lemma 3.3: Let G = Ap;pjp: be a triangle produced by TRI1 which satisfies the following conditions.

1. G is obtuse with the obtuse angle £p;p;pk.

2. G has good circumcenter.

3. |Pip;l > V2d and |F5PR] 2 d.

Let 7;Pr intersect p;pr inside at p; and Lp;p;jpi be obtuse as shown in Figure 3.1. Then, |Fipr| > 1.584.
Lemma 3.4: Any triangle G produced by TRI1 which has bad circumcenter is a boundary triangle. Moreover, G
has a boundary edge as the opposite side of the obtuse angle.

Lemma 3.3 is used to prove this Lemma.
Lemma 3.5: Each inner obtuse triangle G produced by TRI1 have angles in between 30° and 120° and sides of
length in between d and 2d.
Proof: Combine Lemma 3.2 and Lemma 3.4.%
Lemma 3.6: Let G = Ap;p;pi be a triangle such that each of its sides has length between d and 1.5d. Then, the
angles of Ap;pjpr must be in between 38.9° and 97.2°.
Theorem 3.1: Triangles produced by the algorithm TRI1 satisfies the following conditions.(i) Each inner obtuse
triangle has angles in between 30° and 120° and sides of length in between d and 2d. (ii) Each boundary obtuse
triangle has angles in between 38.9° and 97.2° and sides of length in between d and 1.5d.
Proof: According to Lemma 3.4 each obtuse boundary triangle has a boundary edge as the opposite side of the
obtuse angle. Since each boundary edge has length in between d and 1.5d, these triangles must have sides of length
in between d and 1.5d. Further, according to Lemma 3.6 these triangles have angles in between 38.9° and 97.2°. By
Lemma 3.5, each inner obtuse triangle produced by TRI1 satisfies the stated conditions.&



104

Input Conditions of TRI1: Let §; be the minimum distance between any two points. Let 62 be the minimum
_ distance between a point and a boundary edge and 63 be the minimum length of any boundary edge. Let d =
min(6;, b2, %—) Definitely, each boundary edge is greater than or equal to 3d. It is easy to divide such edges into
segments which have lengths in between d and 1.5d. This introduces new points which can not be closer than d
to any other points by the choice of d. Again, no two points can be closer than d. Thus, d satisfies all the input
conditions of the algorithm TRI1.
- Complexity of TRI1: The time complexity of the algorithm depends on the time of updation. Clearly, each
updation can be done in O(n) time where n is the number of points present in the output. This gives a time
complexity of O(n?), though on the average, the number of points affected by each update remains constant and
thus the algorithm runs in O(n) time on the average.

Let the area of the boundary to be triangulated be A. Since the distance between any two points is at least d in
the output produced by the algorithm, the number of points added is bounded by the number of equilateral triangles
with sides of length d which can fit in the area A. Thus, TRI1 produces at most 7“5“3 triangles.

4 Triangulation with Grid

In [2], Baker et. al have given an algorithm to triangulate a simple polygon with nonobtuse triangles. They overlay
a square grid on the polygon and observe that each inner square through which no boundary edge passes, can be
triangulated with two right angled triangles. The difficult part is to triangulate the squares through which a boundary
edge passes. See Figure 4.1. They give a tedious method to triangulate these regions into nonobtuse triangles. Here,
we give a very simple method to triangulate these regions so that all obtuse triangles have angles between 12° and
101°. Our algorithm allows input points inside and on the boundary of the given polygon.

Lemma 4.1: Let p;p; be a line segment. Let p;p, and p;p: be two rays, perpendicular to 5;5; at p; and p;. Further,
let PiPm be another line segment, parallel to B;p; intersecting p;p, and p;p; at p; and p,, respectively. Let p; be a
point which lie in the shaded region as shown in Figure 4.2. The angle /p;pip; is maximized when p; is the midpoint
of the line segment 7ip,,.

Lemma 4.2: Let p;p; be a line segment. p;p, and pjp; are two rays perpendicular to 5;p; drawn at p; and p;
respectively. Let p, pm and p; be three points on p;p,, pjp: and P;p; respectively as shown in Figure 4.3. Further,
let |Bipl = S, |PjPml = L and |p;P;| = T Let Spin, Limin denote minimum values of S and L respectively and T},

denote the maximum value of T. The maximum value of £p,pip; is 180 — tan‘l(ig;’iﬂ-) - tan“(rf:":{-_ﬂ;) where

\/Tf%mz-srznin + (Lmin - Smin)(Tgmg,-Smin + LminSmin(Lmin - Smin)) - Tmaa:smin
Fo= (L in — Smin)

Lemma 4.3: Let S be a set of points in the simple polygon P containing no acute interior angles. S includes the
points corresponding to the vertices of the polygon. By introducing points inside P and on the boundary of P, S
can be triangulated in such a way that each obtuse triangle has angles between 12° and 101°.

Proof: We draw horizontal and vertical lines through each point in S. This forms a rectangular grid. We refine
the grid so that through any rectangle no two nonadjacent boundary edges pass and each side of any rectangle has
length in between d and 1.5d for some d. The choice of d and the method of this refinement are discussed later.
We introduce the gridpoints which are inside P and also the points where the gridlines intersect the boundary. We
introduce the edges between these points which are on the grid. Each internal rectangle through which no edge
passes, can be triangulated into two right angled triangles by a diagonal. While triangulating the rectangles through
which a boundary edge passes, we introduce points only inside P or on the boundary of P, but not on the sides of
the rectangles. Thus, each rectangle can be triangulated independently without propagating points to the adjacent
rectangles.

If two boundary segments pass through a rectangle, they must be adjacent. Since the interior angles between the
corresponding boundary edges is obtuse, the regions of P bounded by these two boundary segments and the sides
of the rectangle must be disjoint. Thus, we can triangulate these two regions independently. This implies that we
need to worry about how to triangulate the region in P bounded by a boundary segment and sides of a rectangle
without introducing points on the sides of the rectangle except at the corner points and the points where boundary
intersects them.

Let abcd be a rectangle through which the boundary segment pg passes. W.l.o.g., assume b to lie inside P.
Case(i): See Figure 4.4. The triangle is a nonobtuse triangle. . ' '
Case(ii): See Figure 4.5. In this case carry out the triangulation as shown. The angle Lpgb is nonobtuse since ¢ lies
outside the circle drawn with the diameter ab. This is because of the fact that the maximum length of ab is 1.5d and
the minimum length of cd is d.__ _ .

Case(iii): See Figure 4.6. Let |ab] = T and |ad| = L. Without loss of generality, assume T > L.‘ Draw a line segment
3t which is parallel to ab and at a distance of %tan40° from it. We have two subcases depending on the position of
p. Consider the case where p lies on @5. If Lgpb is obtuse, carry out the triangulation as shown in Figure 4.6(a). Let
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7% be the perpendicular line to cd at ¢ and 5% be the perpendicular line to pb at p. These two lines meet at u. Join u
to b and ¢. This may render £pub to be obtuse which can be resolved by dropping a perpendicular from u on Pg. We
prove that the angle Zcub can never be obtuse. As can be seen £gpb = 90° + B — . For Lgpb to be obtuse, we must

P T b o pd| — - L— e Tl e L2 e T2 T
have B > « which implies |dg| < %—L Let |ap| = z. We have |dg| < ir—’)- This gives |dg| < F < 77 = 7+ Thus

maximum value of |dg| is 0.375d. This immediately implies u lies outside the semicircle drawn with the diameter be.
Hence, Zcub must be nonobtuse.

Consider the case when instead of Zgpb, the angle Zbgp is obtuse. We know the minimum values of |bc| and |pd|
ared and (d— L‘i',}ﬂ) respectively and the maximum value of |dc| is 1.5d. Applying Lemma 4.2 with these values
we get the maximum value of Zbgp to be less than 101°. It can be proved that minimum values of Zgbp and Zgpb
are greater than 12°.

Let us consider the subcase when p lies on ds. If the angle Zgpb is obtuse, one can obtain nonobtuse triangulation
in the same way as discussed in the previous subcase. If instead, Lbgp is obtuse, carry out the triangulation as in
the case when Zgpb is obtuse, but with the role of p and g switched. See Figure 4.6(c). In this case the only angle

which may be obtuse is Lbua. Since [a3| = l“—bl%'-‘-ﬁ, the angle Zbua is 100° when u is the midpoint of st. Thus, by
Lemma 4.1 Zbua has the maximum value of 100°. It easy to see that the minimum value of angles Zuab and Labu
is greater than tan"l('°"4°°) which is greater than 22°.

This exhausts all possible cases and we observe that all obtuse triangles produced by this method have angles
between 12° and 101°.&

Generating grids with proper spacings: Draw a horizontal and a vertical line through each point to have an
initial grid and then refine this grid so that no two nonadjacent boundary segments pass through a rectangle. Let
h be the minimum spacing between any two adjacent grid lines. Take d = % Definitely, with this choice of d, two
adjacent gridlines have spacing of at least 3d. It is easy to refine such a grid so that every adjacent gridline spacing
lies between d and 1.5d. .

Theorem 4.1: Let S be a set of points in the simple polygon P . S includes the points corresponding to the vertices
of the polygon. By introducing points inside P and on the boundary of P, S can be triangulated in such a way that
each obtuse triangle has angles between 101° and 12°.

Proof: As discussed in [2], corresponding to each vertex of P where the interor angle is acute, we can cut off a
triangular portion, such that the cut off triangle is nonobtuse and does not contain any point inside. After this
modification, we apply Lemma 4.3 on the new polygon thus generated from P which does not have any acute interior
triangle. This may introduce points on the side of the cut off triangles which is not a boundary segment. Such
triangles with those added points can be triangulated with nonobtuse triangles as shown in Figure 4.7.&

The algorithm based on voronoi triangulation can easily be extended to 3-D which guarantees the face angles
of each tetrahedron to be in between £30° and £120°. But, this does not ensure any good bounds on the dihedral
angles or solid angles of the tetrahedra. Currently, research is going on to find out algorithms for good triangulations
in 3-D.
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