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Abstract

We consider the problem of determining an optimal pair of
paths for two point robots that must remain covisible while
moving in a plane cluttered with polygonal obstacles. We solve
the (MIN-SUM) problem of minimizing the sum of the path
lengths with an algorithm that requires time O(E + nlogn)
and space O(E), where E is the size of the visibility graph in-
duced by the set of obstacles. We also solve the (MIN-MAX)
problem of minimizing the length of the longer path in time
O(E? 4 n2logn) and space O(E). In addition, we discuss the
(MIN-TIME) problem of obtaining a coordinated motion pa-
rameterized by time that minimizes the time needed for both
robots to reach their destinations. Assuming a common up-
per bound on velocity, we find a pair of paths together with
a parameterization guaranteed to be within a factor of 2 of
optimality.

1 Introduction

Imagine that two robots must communicate with one an-
other while traveling among obstacles. The robot ge-
ometry, the obstacle geometry, and the effectiveness of
communication can be modeled in various ways, but let’s
assume that we have point-sized robots, polygonal obsta-
cles, and a communication system that works only when
‘the robots can see one another. Assume, also, that ini-
tial and final positions for each robot have been specified,
and that both robots have the same maximum speed. Un-
der these assumptions, we consider the following optimal
motion planning problems:

MIN-SUM Find a pair of paths between the initial
and final positions that minimizes the sum of the
two path lengths subject to the communication con-
straint.

MIN-MAX Find a pair of paths between the initial
and final positions that minimizes the larger of the
two path lengths subject to the communication con-
straint.

MIN-TIME Find a coordinated motion parameterized
by time that minimizes the time needed for both
robots to reach their destinations while maintaing
communication.
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Alternatively, we can view these problems as motion
planning problems for a single robot with four degrees
of freedom. In this case, imagine that the robot is a col-
lapsible rod that can simultaneously translate, rotate, and
expand or contract. We seek optimal motions for the rod,
using the distances traveled by its endpoints as optimiza-
tion criteria.

Prior work in this field suggested that shortest path
planning for a robot with more than two degrees of free-
dom was inherently difficult. While shortest paths among
polygonal obstacles for a point robot or a translating poly-
gon (two degrees of freedom) can be found exactly in
worst-case quadratic time, finding a shortest path for a
point robot among polyhedra in three-space (three de-
grees of freedom) is NP-hard [CR]. The problem of mov-
ing a ladder (or any noncircular body free to rotate) in
an optimal manner among obstacles in the plane (three
degrees of freedom) is also very challenging and has been
solved only for a restricted class of allowable motions [PS].
A characterization of optimal motions that doesn’t pre-
suppose a certain class of motions was obtained recently
[IRWY], but it applies only when no obstacles are present.

We were, therefore, somewhat surprised to discover
that we can solve the MIN-SUM problem, which admits
four degrees of freedom and allows obstacles to be present,
in the same complexity as the best shortest path algo-
rithm for a single point robot with two degrees of free-
dom. Our algorithm requires time O(E + nlogn) and
space O(E).

The main ideas behind our algorithm are as follows:
we characterize the geometric form of optimal solutions;
we bound the number of candidate paths satisfying these
geometric constraints; and we use the theory of funnel
trees and graph searching to enumerate and evaluate the
candidate paths in time and space proportional to the
number of such candidates.

A variation of our algorithm solves the MIN-MAX
problem in time O(E? + n’log n) and space O(E). More
generally, we can solve the “bicriteria” version of the prob-
lem: given an upper bound on the length of one agent’s
path, find a motion of both covisible agents that mini-
mizes the length of the other agent’s path.



The MIN-TIME problem with bounded robot velocity
~ seems to be quite difficult. We show that the optimal-time
motion may correspond to a pair of paths that are not
even locally optimal with respect to distance. Although
we have not yet solved this problem exactly, we give a
method of obtaining an approximate solution guaranteed
to be within a factor of 2 of optimality.

2 Definitions and Preliminaries

Consider a set O of disjoint, simple-polygon obstacles de-
fined by a total of n vertices. We define freespace, F,
to be the set of all points in the plane that are not con-
tained in the relative interior of any obstacle. Note that
the boundaries of obstacles are included in freespace. A
configuration is an ordered pair of points in freespace that
are visible to one another in the sense that the line seg-
ment joining them lies within freespace. Such points are
called covisible, and the line segment connecting them is
called a feasible line segment.

A path function is a continuous function from the unit
interval [0,1] into freespace that determines the position
of a moving point at time 7 € [0,1]. The image of a path
function, the subset of freespace traversed by the point,
is called a path; and any path function with image p is
called a parameterization of p. We denote the length of
path p by u(p). A path-pair is an ordered pair of paths
(p1,p2) and is feasible if there exist parameterizations f,
and f of p; and p2, respectively, such that for all times
T the points fi() and f2(r) are covisible.

Now we can formally state the MIN-SUM problem:
given an obstacle set O, an initial configuration (s1, s2),
and a final configuration (%1, 2), find a feasible path-pair
(p1,p2) between these configurations that minimizes the
sum p(p1) + p(p2).-

3 Characterizing Optimal Motions

For a path-pair (p1, p2) from (81, 82) to (21, t2) to be feasi-
ble it must satisfy a topological condition. Loosely speak-
ing, we say that the paths must lie in the same “channel”
between the obstacles. Putting it another way, the closed
path from s; to s using path p;, line segment i1z, path
p2, and line segment 3731 must not contain any obstacles.
We call the closed path described above the path-polygon
of the path-pair (p1,p2) and call the paths and line seg-
ments the definining paths and defining line segments,
respectively, of the polygon.

We say that a path-polygon is obstacle-free if it can be
continuously deformed in freespace to a single point. More
precisely, if P is a path polygon and v is a vertex of P, then
P is obstacle-free if the path P has a parameterization
homotopic to the constant function f(r) = v. When
the path-polygon of a path-pair is obstacle-free, we say
that the path-pair is topologically feasible. The following
lemma states that topological feasibility is a necessary
-condition for feasibility.

Lemma 1 If a path-pair is feasible, then it must be
topologically feasible.
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Lemma 1 establishes that we can limit our search for an
optimal path-pair to the set of topologically feasible ones.
But there is a continuous family of topologically feasible
path-pairs for every homotopy class of paths from s, to t;.
Since we find optimal path-pairs for the MIN-SUM and
MIN-MAX problems by enumerating and comparing fea-
sible candidates, we must reduce the search space further
to do this efficiently.

We make the search efficient by considering only those
path-pairs that are locally optimal. A locally-optimal
path for the single-point shortest path problem is a path
that cannot be shortened by making local changes; it is
a “taut-string” path, which is known to consist of visibil-
ity graph edges ([Le], [SS], [Mi]). Similarly, a path-pair
is locally optimal if each individual path is a taut-string
path.

If a path-pair (p1, p2) is both topologically feasible and
locally optimal, the paths p; and p must satisfy exactly
one of the following three conditions:

1. the paths are disjoint;

9. the intersection of the paths is a polygonal chain
whose endpoints are vertices of the visibility graph
(this includes the case in which the intersection isa
single vertex); or

3. the intersection of the paths is a single point that is
not a vertex of the visibility graph.

These three cases lead to three types of path-polygons:
“hourglasses”, “funnelglasses”, and “bowties”, respec-
tively. We define these terms below and refer the reader
to [MW] for a brief discussion of their history.

An hourglass between a feasible line segment 3732 and
another feasible segment 711, is an obstacle-free polygon
bounded by these segments and two disjoint paths p and
p2 where p; is a locally optimal path from s, to t1, and
p2 is a locally optimal path from s to 2.

A funnel between vertex v and line segment 3733 is a
simple, obstacle-free polygon bounded by 3132, a locally
optimal path from v to s, and a locally optimal path from
v to 82. The vertex v is called the apex of the funnel, and
the segment 3737 is called the base. The path from apex
to base with the interior of the funnel on its left side is
called the lower chain of the funnel and the other path is
called the upper chain.

A funnelglass between a feasible line segment 3752 and
another feasible segment 7173 is a pair of funnels (f, and f2
with bases 5737 and 7113, respectively, joined by a shortest
path between their apices in such a way that both the path
p1 from s; to t) and the path p; from &2 to ¢ are taut.

A bowtie between a feasible line segment 3757 and an-
other feasible segment 7;1; is a polygon formed from these
line segments and two locally optimal paths, p1 from s;
to t; and p; from 33 to t2, that intersect at a single point
that is not a vertex of the visibility graph.

In summary, we can characterize fully the set of locally
optimal, topologically feasible path pairs:

Lemma 2 Ifa path-pair is locally optimal and topologi-
cally feasible, then its path-polygon must be an hourglass,
a funnelglass, or a bowtie.

Our next lemma states that locally optimal, topo-
logically feasible path-pairs not only form characteristic
shapes but also admit feasible parameterizations.
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Lemma 3 If a path-pair is locally optimal and topo-
logically feasible, then it must be feasible.

Lemma 3 implies that an optimal path-pair must be
locally optimal. Otherwise, it could be shortened and the
new version would still be feasible. This, together with
Lemma 2, gives the following theorem.

Theorem 1  An optimal path-pair for the MIN-SUM
problem is obtained by selecting one for which the path-
polygon is an hourglass, a funnelglass, or a bowtie, and
the associated cost (u(p1) + p(p2)) is minimum.

Theorem 1 establishes the correctness of our algorithm,
which appears in section 4. The efficiency of our algo-
rithm depends on the number of hourglasses, funnels, and
bowties that can occur. In section 5, we show that the
following combinatorial bound on the number of these ob-
Jjects holds:

Theorem 2  There are at most O(E) hourglasses, fun-
nels, and bowties.

4 The MIN-SUM Algorithm

Instance: A set O of polygonal obstacles, an initial con-
figuration (s1, 82), and a final configuration (¢, 12).

Algorithm:

1. Compute the visibility graph V G;(0©) for the obsta-
cle set and the points sy, s2, t1, and 1, treating 3753
as a line segment obstacle, and compute the visibility
graph VG3(0) for the obstacle set and the points s,
82, 11, and ¢ treating 7;7; as a line segment obstacle.

2. Generate all funnels with base 3737 or 7;15.

3. Generate all hourglasses and bowties from 3737 to
tit2 and determine which has the best associated
path-pair.

4. Define an augmented visibility graph G as follows:

¢ Beginning with the visibility graph VG,(0)
obtained in step 1, create an additional “fun-
nel” node fn for each funnel f generated in
step 2.

e Connect each funnel-node fn to the node v cor-
responding to the apex of funnel f. Let the
length of edge (fn,v) be half the sum of the
two lengths of the defining paths of f;

o Create a “supersource” node s, linking it with
an edge of length 0 to each funnel-node corre-
sponding to a funnel based on 373;. Similarly,
create and link a “supersink” node ¢ to each
funnel-node corresponding to a funnel based on
t t2.

5. Find a shortest path from s to t in the graph G. This
determines the best path-pair for which the path-
polygon is a funnelglass.

6. Compare the results of Step 3 and Step 5. If Step 3
produced a value smaller than twice the length of the
shortest path found in Step 5, then return the path-
pair corresponding to the best hourglass or bowtie.
Otherwise, return the path-pair corresponding to the
best funnelglass found in Step 5.

5 Discussion and Analysis

Step 1 of the algorithm builds the visibility graph using
the algorithm of Ghosh and Mount [GM]. The structure
obtained in this step, which is called the “enhanced visi-
bility graph” by Ghosh and Mount, provides a representa-
tion of the nodes visible to a given node sorted angularly
about that node. This step takes O(E + nlog n) time and
uses O(FE) space.

The enhanced visibility graph provides us with the abil-
ity to perform Step 2 of the algorithm efficiently; we gen-
erate all funnels with base 3737 or 71z in O(E) time and
O(FE) space.

We can represent each funnel with a fixed amount of
storage space because a funnel is uniquely determined by
the first edge on its lower (or upper) chain when its base
is fixed [GM]. This fact also provides a bound of O(E) on
the number of funnels with a given base.

Funnels can be generated in output-sensitive time be-
cause they are linked to one another in a structure called
a funnel tree [GM]. Funnel trees, which are contained im-
plicitly within the enhanced visibility graph, allow us to
compute the lengths of each funnel’s chains in constant
time from the lengths of its parent’s chains. A traversal
of the “lower” funnel tree produces the lengths of all lower
chains and a traversal of the “upper” funnel tree produces
the lengths of all upper chains.

In addition to providing us with the length of each fun-
nel in amortized constant time, a funnel tree traversal
produces a linear ordering of the funnels called a funnel
sequence [GM]. We use the funnel sequence obtained by
a clockwise preorder traversal of the lower funnel tree in
computing the length of a bowtie.

Step 3 of the algorithm generates hourglasses and
bowties between 3737 and 71t;.  An hourglass can be
partitioned into two funnels by an edge of the visibility
graph that is tangent to both defining paths of the hour-
glass. We choose one of the two such edges to represent
the hourglass. This edge uniquely determines the two fun-
nels and, therefore, determines the hourglass and allows
us to compute its length from the lengths of the funnels
in constant time. So there are O(FE) hourglasses and it
takes O(E) time to find the best one.

Bowties are processed in a similar fashion. Each bowtie
is contained in a unique hourglass and is determined by
the same edge as the hourglass that contains it. There
are O(E) bowties, too, and the length of each can be
determined from the funnel sequence in constant time.
Thus we can find the best bowtie in O(E) time.

Finally, the best funnelglass is found by searching the
graph constructed in Step 4 of the algorithm. The con-
struction of this graph takes O(E) time since O(E) ver-
tices and edges are added to the visibility graph. The
shortest path in this graph can be found in O(E +nlog n)
time ([Di],[FT]) and corresponds to the best funnelglass.

In summary, we have the following theorem:

Theorem 3 An optimal solution to the MIN-SUM
problem can be found in O(E + nlog n) time and O(E)
space.



6 The MIN-MAX Problem

In the MIN-MAX problem we want to minimize the larger
of the two path lengths, rather than the sum of the two
path lengths. We use the same basic approach to solve
this problem as the one we used for the MIN-SUM prob-
lem.

We enumerate funnels, hourglasses, and bowties keep-
ing track this time of each of the two path lengths p; and
p2. We now choose the best bowtie or hourglass accord-
ing to the min-max criterion, but the main difference is
that the augmented visibility graph now has two differ-
ent lengths associated with each edge. We are not able
to solve as efficiently the resulting graph search problem
since it is a bicriteria shortest path problem. In general,
the bicriteria shortest path problem is NP-hard, but our
problem has a special structure that allows an efficient
solution; namely, the only edges of the graph with two
different edge lengths are those edges incident to a funnel
node.

We find the best funnelglass by enumerating all funnel
pairs (with one funnel on base 3737 and the other on base
1112) and connecting each pair of apices by a shortest path
in the visibility graph. After running an all-pairs shortest
path algorithm on the visibility graph (in O(En+n? log n)
time), we calculate the length of each funnelglass in con-
stant time. Since there are O(F) funnels on each base, it
takes O(E?) comparisons to find the best funnelglass.

In summary, we have the following theorem:

Theorem 4 An optimal solution to the MIN-MAX
problem can be found in O(E? 4 n?log n) time and O(E)
space.

7 The MIN-TIME problem

The MIN-TIME problem is to find a coordinated motion
parametrized by time that minimizes the time it takes
until both agents reach their destinations, assuming that
they both have the same maximum speed. It seems un-
likely that our approach can be used to find the opti-
mal solution exactly since min-time paths need not be
locally optimal with regard to distance. Therefore, min-
time paths need not lie on the visibility graph and will not,
in general, form hourglasses, funnelglasses, and bowties.
But a simple parameterization of the min-sum path-pair
gives a provably good approximation to the optimal solu-
tion. We formally state this result below:

Theorem 5 A simple parameterization of the MIN-
SUM path-pair gives an approximate solution to the MIN-
TIME problem that takes no more than twice the time of
an optimal motion.

8 Final Remarks

We have shown that optimal solutions to the MIN-SUM
and MIN-MAX problems can be computed efficiently.
Our algorithm for these problems is, to the best of our
knowledge, the first polynomial-time algorithm that finds
an optimal motion for a robot system with more than two
degrees of freedom.

A more complete account of this work appears in MW],
where we prove the lemmas and theorems stated without
proof here and provide historical and algorithmic details
not mentioned here.
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