120

On Coordinated Motion Through a Maze

Joseph Friedman

Stanford University

Abstract

We look at problems of having m points that move in
response to the same force (such as gravity) escape
a polygonal maze of n line segments. We give an
algorithm to determine the shortest sequence of tilt
or rotation movements by which all the points can
escape, if one exists. For a fixed number of points,
m, our algorithm runs in polynomial time. If m =
©(n), then an exponential number of moves may be
necessary, and to determine if all points can escape
is PSPACE-complete.

1 Introduction

Suppose we have a container that has one or more
openings and has a few little objects, such as marbles,
inside it. When we gently turn or tilt the container,
the marbles inside it may move because of gravity.
Our goal is to get all the marbles out through the
openings in the container.

In this paper we con-
sider this problem for a
two-dimensional container
whose walls are made of n
line segments that intersect
only at their endpoints. We
call such a container a maze
(see Figure 1). The maze
contains m marbles, each of
which is a single point.

At any moment, the posi- Figure 1: A maze
tion of the marbles is determined by the gravity vec-
ior, which is an arbitrary direction a. The gravity
vector can change according to rules specified below.
Each marble responds to changes in o by moving
through free space in direction o and rolling along
walls to the walls’ lower corners (with respect to «)
until it reaches a convex corner which is a local mini-
mum (see the top left marble in Figure 1). To remove
ambiguity, when a marble hits a horizontal segment
or an endpoint from which it could roll out on either

John Hershberger
DEC Systems Research Center

Jack Snoeyink
Stanford University

of the adjacent segments, the marble always rolls to
the right. Two marbles that get stuck at the same
point do not interfere with each other—and since all
marbles respond to the same forces, the two can be
identified and treated as one. Once a marble has
moved below all the segments making up the maze,
we say that this marble has escaped the maze, and
remove it from further consideration.

We consider the rotation paradigm in Section 2.
Under this paradigm, the legal movements are contin-
uous rotations of the maze either clockwise or coun-
terclockwise; to change from gravity vector o to grav-
ity vector G, one has to go through all the directions
in between. We show an algorithm for determining a
shortest sequence of movements by which all the mar-
bles escape, if such a sequence exists. When the num-
ber of marbles m is fixed, our algorithm runs in time
polynomial in n, the number of walls in the maze.
When m is ©(n), the algorithm requires a number of
steps that is exponential in n, but uses polynomial
space.

The tilt paradigm is a generalization of the rotation
paradigm, in which the gravity vector o can change
arbitrarily between moves. In Section 3 we show how
to modify the rotation maze algorithm for tilt mazes.

In Section 4 we show that under-both paradigms,
the problem of deciding whether the marble maze has
a solution is PSPA CE-complete. Our proof is direct:
for a given polynomial-space Turing machine M and
a string = we construct a marble maze such that the
movements in the maze simulate the computation of
M given z as input.

A number of researchers have considered titling as
a means of reorienting parts for robot assembly tasks.
This approach was first proposed by Grossman and
Blasgen [5], and has later been studied by Erdmann
and Mason [3] and Natarajan [8]. Natarajan has
showed that some variants of the parts orientation
problem are PSPACE-complete.

The path taken by a single marble is the same
as the path taken by a robot moving with perfect
control under the compliant motion model (1, 2, 7].

Friedman, Hershberger, and Snoeyink [4] consider
(among other things) robots that must stick at sub-
goals. Their methods can find a sequence of n tilts in
O(n®log n) time and space by which a single marble
can escape.

Canny and Reif [1] have shown that the problem of
having marbles escape a maze in 3-space is NP-hard,
even if a single marble is dropped into a stationary
maze.

Research on multiple robots usually deals with
independently-controlled robots that can interfere
with each other(see, for example, [10, ch. 2&3]).
Our algorithm for the marble-maze problem provides
multi-step motion plans for independent compliant-
motion robots that respond to the same motion com-
mands (perhaps they share a single radio channel to
their central computer).

2 The Rotation Paradigm

Recall that under the rotation paradigm we allow
only continuous rotations of the maze. Equivalently,
we allow rotation of the gravity vector o either clock-
wise (CW) or counter-clockwise (ccw). We assume
that when marbles are moving, the rotation stops.
In this section, we describe an algorithm that com-
putes the shortest sequence of rotations required to
get all the marbles out of the maze.

The algorithm traverses a state graph, in which
each node captures some marble configuration inside
the maze (a state). The state graph contains an arc
from node u to node v if and only if the state corre-
sponding to u changes to the state corresponding to v
by a cw or a cCW rotation. The algorithm simply
performs a shortest-path search from the node repre-
senting the initial marble configuration to the node
representing the empty maze.

.

chain spiral

Figure 2: Two chains; one is a spiral

First, however, we notice that marbles stay in spi-
rals in rotation mazes and that we can build marble
traps. For example, no marble can escape from the
spiral shown in Figure 2 because marbles that leave
the chain return to the chain.

121

Let us now return briefly to the state graph. We
partition the segments of S into s < 7n spirals, then
we describe the marble configuration in the maze by
an s-bit binary vector that contains at most m 1’s:
when a bit is 1, the corresponding spiral contains a
marble. The number of nodes in the state graph is

=2 ()20

=0 1=0

When m is fixed, v = O(n™); when m is Q(n), then
v = 0(2").

A breadth-first search obtains the shortest se-
quence of rotations in O(vm) time and space. Un-
fortunately, when m = Q(n), this algorithm requires
exponential space.

Alternatively, we can use an approach similar to
the one used by Savitch [6, 9] and keep the space
requirements down, at the cost of increasing the run-
ning time. When m = Q(n) marbles, the space re-

quirement is O(n?) and the running time is 20(n?),

3 The Tilt Paradigm

Recall that in the tilt method we
allow the direction of the grav-
ity vector to change arbitrarily
from one move to the next. In
spite of the increased freedom,
the maze may still contain mar-
ble traps, as illustrated in Fig-
ure 3. Once inside the trap, a
marble can only reach other cor-
ners of the trap.

The algorithm is basically the same as outlined in
Section 2. However, it is not enough to partition the
environment into spirals for the state graph, so we use
all the convex corners of the maze instead. Precisely,
if s < nis the number of convex corners of the maze,
the nodes in the state graph are s-bit binary vectors
with at most m 1’s, and a 1-bit corresponds to a
marble in the appropriate corner. The number of
nodes v is O(n™) for a fixed m and O(2") for m =
Q2(n), as before.

Let us determine the out degree of a node in the
state graph.

Figure 3: A tilt
trap

Lemma 3.1 For any marble at a point p in a maze
with n segments, there are O(n) intervals of direc-
tions such that a compliant motion in all directions
in an interval ends at the same convez corner.

122

We conclude that the out degree of a node in
the state graph is O(mn). We can compute all the
neighbors of a particular node by merging the pre-
computed n ranges of each of the (at most) m con-
vex corners containing marbles. The merge runs in
O(mnlogm) time. Therefore, the complexity of a
breadth-first search algorithm for the tilt paradigm is
O(vmnlog m) time and O(vm) space, and the com-
plexity of a Savitch-style algorithm is O(v'°8?+* log v-
mnlog m) time and O(log? v + mn) space.

4 Simulating Computations

In this section we investigate the ability of marble
mazes (under both paradigms) to simulate Turing
machines. Throughout this section, let M be an arbi-
trary fixed Turing machine with the following prop-
erties:

o The alphabet of M is {B,0,1}. B is the blank
symbol, and is not part of the language recog-
nized by M (in other words, the input tape is
always a finite contiguous sequence of 0’s and
1’s surrounded by B’s);

¢ M uses a single one-way infinite tape, and starts
the computation on the leftmost nonblank tape
cell;

o There is a function S(n) > n such that in any ac-
cepting computation of M on an input of length
n, M scans at most S(n) cells.!

The main result of this section is the following theo-
rem. The theorem holds under both paradigms.

Theorem 4.1 Using the above notation, for any in-
put string = over {0,1}" we can construct a marble
maze L(z) such that all the marbles can escape L(z)
if and only if M accepts z. Our construction uses
O(log S(n)) space, and produces a marble maze with
O(S(n)) edges and O(S(n)) marbles.

Furthermore, if M accepts = in t sieps, then the
shortest solution of L(z) uses ©(t) movements.

By way of remark, the second part of this theorem
applied to a simple machine that counts in binary
implies an exponential lower bound on the number of
movements needed to solve marble mazes. The first
part and the previous sections imply the following
corollary:

Corollary 4.2 The problem of determining whether
a marble maze L has a solution is PSPACE-complete.

1We also require that logS(n) be space-constructible
(see [6, p. 297]).

A Conceptual Overview of the Construction

Fix z, the input string. The segments making up
the marble maze L(z) depend only on the length of z
(and on the transition table of the machine M). The
initial placement of the marbles in L(z) specifies the
contents of z.

The maze L(z) consists of a trap L-cell, followed
by S(n) — 1 basic L-cells, followed by a head L-cell,
an additional S(n)—1 basic L-cells and another trap
L-cell. The basic L-cells are all identical; the trap
L-cells and the head L-cell are each as big as a ba-
sic L-cells, but have a different structure. (See Fig-
ure 4.) The L-cells correspond to the cells of M’s
tape. The head L-cell always corresponds to the cell
that M’s head scans, and therefore the correspon-
dence between L-cells and tape cells keeps shifting
right or left as M carries out its computation on z.
The maze L(z) contains a total of S(n) marbles, and
at any given moment these marbles occupy a chunk
of S(n) consecutive L-cells, one marble per L-cell.

The trap L-cells at both ends guard against “spill-
overs” which can happen when a non-accepting com-
putation attempts to consume more than S(n) tape
cells. In this case, a marble enters the trap cell and
the maze has no solution. From now on, let us refer
to a non-trap L-cell simply as an L-cell.

When the marbles are at rest, they are in special
corners of the read or write halves, called pockets.
The read half of every L-cell records the contents of
the corresponding tape cell as well as the current state
of the machine; in other words, the read half of every
L-cell has a pocket for every pair (g,a) of state and
alphabet symbol. The write half records, in addition
to this, the symbol under M’s head, namely, a pocket
for every triple (g, h,a). We discuss the particular im-
plementation of pockets in Sections 4 and 4. Figure 5
shows the pockets used in a simulation step—due to
space contraints, we omit the description.

Let us conclude this conceptual overview with a
look at the end and the beginning of the computation.
The construction of L(z) must allow the marbles to
escape when M reaches an accepting state. We can
achieve this by replacing the all pockets that corre-
spond to symbols in accepting states with openings
in the read halves of all the L-cells.

If the initial state of M is g¢, and the input string
Z = agy...G,-1, the initial marble configuration in-
side L(z) has a marble in the pocket (go,a;) of the
read half of the ith L-cell to the right of the head L-
cell, and a marble in the pocket (gy, B) any the other
L-cells to the right of the input.

123

Write
Read
Head
Basic L-Cells L-Cell Basic L-Cells
Figure 4: The conceptual structure of the maze L(z)
H B Bo 31 ° H B Bo“‘ﬂ'}) H B Bo 31 H
-Y !. ,I T H H Y H H ‘-
: i :
__"_L State ¢ i State g :L Sxfﬁ_q .
Head L-cell

Figure 5: A simulation of a step of M.

Gadgets for the Tilt Paradigm

Let us concentrate on the tilt paradigm, and de-
scribe how to construct traps, pockets, and the head
L-cell’s near-traps. The trap cells have a tilt trap
very much like the one shown in Figure 3 in both the
read and write halves. In other L-cells, a pocket is
simply a convex corner.

Figure 6 shows how to merge three pockets in the
write half of the head L-cell so that they guide the
marble into position (g, k, h'), as described above. In
Figure 7 we show how to implement the near-traps on
the pockets of the read half in the head L-cell. These
near-traps force the marble in the pocket to go in a
very narrow range of directions, and trap the marble
for any other direction.

Gadgets for the Rotation Paradigm

The trap cells employ a trap similar to the spi-
ral shown in Figure 2. The other gadgets for rota-
tional mazes are a little bit more complicated to con-

Figure 6: Redirecting the head
marble

Figure 7: A
near-trap

struct than their tilt counterparts. Figure 8 shows
a pocket in the read half of a basic L-cell. The fig-
ure shows the rest position of the marble inside the
pocket; it is easy to see that when the marble rolls
down into the pocket through the entrance at the top,
it ends up in this rest position. The marble can leave

124

Figure 8:
Rot. pocket

Figure 9: Spiral
selector

the pocket using two rotations: first, a CCW rotation
which causes the marble to fall into one of the three
spirals marked 1, 2, and 3 in Figure 8; then, a cW ro-
tation of nearly 180° causes the marble to leave the
point marked p in one of three directions. In the head
L-cell, we place traps on exactly two of the spirals 1,
2, and 3, as illustrated in Figure 9. These traps force
the marble to leave point p in a direction which cor-
responds to the spiral without the trap.

The write pocket of an L-cell is adjusted so that
the marble in the pocket will roll out into the read
pocket (¢',a) in the adjacent L-cell or get trapped if
the maze is rotated the wrong way.

Conclusion of the Proof

We have established the correctness of the simu-
lating maze L(z). It is easy to see that the com-
plexity claims made in Theorem 4.1 are also true:
The complexity of a single L-cell is constant, and
L(z) contains O(S(n)) L-cells. We can construct all
these L-cells using only O(log S(n)) space using a bi-
nary counter that counts up to S(n). We can com-
pute the size of the counter since log S(n) is space-

constructible. This concludes the proof of Theo-
rem 4.1.
Acknowledgements

We thank Digital Equipment Corporation for sup-
porting this research and Avraham Melkman and
Ashok Subramanian for discussions on this problem.

References

[1] 3. F. Canny and J. Reif. New lower bound
techniques for robot motion planning problems.

(5]

(7]

(8]

In Proceedings of the 28th IEEE Symposium on
Foundations of Computer Science, pages 49-60,
1987.

B. R. Donald. The complexity of planar com-
pliant motion under uncertainty. Algorithmica,
5:353-382, 1990.

M. A. Erdmann and M. Mason. An exploration
of sensorless manipulation. IEEE Journal on
Robotics and Automation, 4(4):1-9, Aug. 1988.

J. Friedman, J. Hershberger, and J. Snoeyink.
Input sensitive compliant motion in the plane.
To appear in The Second Scandinavian Work-
shop on Algorithm Theory (SWAT 90), 1990.

D. D. Grossman and M. W. Blasgen. Orienting
mechanical parts by computer-controlled manip-
ulator. IEEE Transactions on Systems, Man and
Cybernetics, SMC 5(5):561-565, 1975.

J. E. Hopcroft and J. D. Ullman. Introduction
to Automata Theory, Languages, and Computa-
tion. Addison-Wesley, 1979.

T. Lozano-Pérez, M. T. Mason, and R. H. Tay-
lor. Automatic synthesis of fine-motion strate-
gies for robots. International Journal of Robotics
Research, 3(1), 1984.

B. K. Natarajan. On Moving and Orienting Ob-
jects. PhD thesis, Cornell University Depart-
ment of Computer Science, Ithaca, N.Y., 1986.

W. J. Savitch. Relationships between non-
deterministic and deterministic tape complexi-
ties. Journal of Computer and Systems Sciences,
4(2):177-192, 1970.

J. T. Schwartz, M. Sharir, and J. Hopcroft, ed-
itors. Planning, Geometry, and Complezity of
Robot Motion. Ablex Series in Artificial Intelli-
gence. Ablex, Norwood, New Jersey, 1987.

