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Spherical Orders, Planar Lattices and Obstruction Graphs in Abstract
Convection Systems

A convection system is defined as a partially ordered group T, called time model,
acting on a set D, called domain, and where all stabilizers are trivial. For a € D, the
orbit {ta : ¢t € T} then represents the time-dependent positions of a particle moving in
the convection system. Orbits possess a natural order structure isomorphic to that of 7',
where a < b if and only if the (unique) ¢ € T such that ta = b is positive (i.e., e < t for
the unit element e of T').

Steady fluid flows studied in physics are the natural examples of convection systems.
Here D is a subset of some R*, T = IR and the orbits, called streamlines, are described by
differential equations. The purpose of this presentation is to show that certain combina-
torial properties of convection systems are independent of the topology and geometrical
nature of D, and are order-theoretical in essence.

As each orbit is ordered, so is the entire domain D, which is partitioned into orbits.
Points belonging to different orbits are incomparable. For a € D, the ray from a is
[a,=)={b€D : a<b}={ta : e <t}. Fora,be D theinterval [a,b] = {z € D :
a < z < b} may be empty; if it is not empty, it can be called the segment from a to b,
and denoted ab.

Perhaps the two simplest natural examples of convection systems are steady fluid
flows with D C IR®. In the uniform flow, D is the entire plane IR?, and the motion
(group action) is described by t x (z, y) = (z, t+y) forall t € R, (z,y) € R. The orbits
here are straight vertical lines. In the central flow, on the other hand, D = IR*\ {(0,0)},
and t x (z,y) = (k'z, k'y), where k is any fixed real number greater than 1. Now the
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orbits are the straight lines drawn from the origine (minus the origine itself). Certain
combinatorial differences between uniform and central flows, first described by Foldes,
Rival and Urrutia [1], are indeed at the origin of the questions considered here.

We are concerned with obstructions that may occur between objects, in the sense
that the motion of an object released in a specific position in the convection system,
and “carried by the abstract fluid”, may be obstructed by another object occupying a
specific position. Formally, some set O of subsets of D need to be specified as objects.
Depending on how inclusive the object class O is, the possible obstruction relationships
that may arise will vary.

These obstruction relationships among the objects can be studied in terms of a di-

rected graph. By a collection of objects we mean a finite, pairwise disjoint set S of
objects. The corresponding obstruction graph is the directed graph with vertex set S
and where there is a directed edge from A to B whenever A # B and for some positive
t, tAN B # 0 (then B is said to obstruct A). The absence of directed cycles in the
obstruction graph is a property of particular interest for the purposes of planning the
motions of disassembly of clustered objects, it indeed corresponds to a condition of se-
quential separability. In this acyclic case, the transitive closure of the obstruction graph
is a directed comparability graph, defining a partial order on the collection of objects,
called the obstruction order (or blocking relation). A < B in this order if and only if
there is a directed path from A to B in the obstruction graph. The question of what
obstruction graphs and orders can or cannot arise in a given convection system has been
investigated in a number of cases [I, 5, 2, 3], in particular in the case of uniform and
central flows in two dimensions. To state the results pertaining to these latter, we need
to recall two definitions:
A partially ordered set with top and bottom elements Max, Min is a planar lattice, resp.
a spherical order, if its coverring diagram can be drawn without intersecting edges on
the plane, resp. on the sphere, so that along each edge the y-coordinate, resp. the
spherical latitude, continuously increases. After removal of any subset of {Max, Min}
such ordered sets are called truncated.

Proposition 1 (Guibas, Yao [{] and Rival, Urrutia [5]) The obstruction graph of a col-
lection of convez polygons in a two-dimensional uniform flow is acyclic. The obstruction
order is a truncated planar lattice, and all truncated planar lattices arise this way.
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Of particular interest are objects that are convez in the order of D, i.e., objects A
that contain the intervals [a,b] (equivalently, the segments ab), for a,b € A. Given a
non-convex set A, there is a b € D\ A, such that A and {b} mutually obstruct each
other, and the existence of such b is characteristic of non-convex sets. Indeed, studies of
obstruction and separability have been mostly concerned with objects that are convex
in some sense. In the sequel we shall also assume the convexity of objects (always meant
hereafter in the order-theoretical sense).

Note that if A C D is convex, then so is tA for any t € T, i.e., convex sets do not lose
their convexity by convection. When considering any set of objects O, we shall always
assume additionally:

(01) If A, B € O, then the convex hull of AU B is again an object.

(02) For every A € O, there is a positive t € T such that ANtA = 0.

Postulate (02) is a generalization of compactness. As for the convex hull of any set C,
recall that it is the union of C and of all the segments having both endpoints in C.

Proposition 2 (Foldes, Rival and Urrutia [1]) In a two-dimensional central flow, all
obstruction orders arising from collections of polygonal objects are truncated spherical,
and all truncated spherical orders arise this way.

The following Propositions are independent of any planar or spherical geometry:

Proposition 3 Given any convection system and object class, the following two cond:i-
tions are equivalent:

(i) directed cycles of arbitrarily large size (chordless) arise as obstruction graphs,

(ii) all spherical orders arise as obstruction orders.

Proposition 4 Given any convection system and object class, the following two condi-
tions are equivalent:

(i) directed paths of arbitrarily large length (chordless) arise as obstruction graphs,

(ii) all planar lattices arise as obstruction orders.
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The equivalent conditions of Proposition 4 hold in the two-dimensional uniform flow
with convex polygonal objects, according to Rival and Urrutia [5]. The stronger equiva-
lent conditions of Proposition 3 do not hold here but they do hold in the two-dimensional
central flow with order-theoretically convex polygonal objects (Foldes, Rival and Urrutia
[1]). In both these cases the time model is the real line IR. For a different example,
let T = R?, with (z,y) < (¢',y’) meaning £ < z and y <y, acton D = IR?, by
(t1,t2)(z,y) = (t1+2, t2+y), and let the objects be order-theoretically convex polygons.
This corresponds to a case of non-deterministic multi-directional convection, such as dis-
cussed in [2]. There again, the conditions of Proposition 4 hold, but those of Proposition
3 do not.
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