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ENUMERATING ONE-DIRECTIONAL BLOCKING
RELATIONS AND EMBEDDING THEM IN
SMALL AREAS ON THE PLANE

Wei-Ping Liu and Ivan Rival

Department of Computer Science
University of Ottawa
Ottawa, Ontatrio, KIN 6N5

Consider a set of disjoint convex figures on the plane and a common direction of
motion, say vertical up, for each of the figures. For figures A and B, we say B obstructs

A, denoted by A—B, if there is a line joining a point of A to a point of B which follows

the moving direction. We write A < B if there is a sequence A=A;5A2—...— Ayx=B. This
relation < on the collection P of figures, called a one-directional blocking relation, defines
an order on P and has been much studied in recent years (cf. [11,[3], [4], [5], [8]). We say
the figures with this blocking relation is a one-directional representation of the ordered set P
(cf. Figure 1). Not every ordered set has such a representation (cf. Figure 2), and, I. Rival
and J. Urrutia (1987) have this characterization of one-directional blocking relations.

THEOREM. An ordered set P has a one-directional representation if and only ifPisa
truncated planar lattice.

A truncated lattice is an ordered set obtained from a lattice by removing the top element or
bottom element or both.

Such a collection of disjoint convex figures on the plane may model the problem of
separating clusters of figures on a computer screen, the problem of guarding collections of
of abjets d'art, or even the problem of navigating an iceberg field in our far north.
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LetR be a one;dircctiOnal representation of an ordered set P. By changing the
direction of movement of the figures (for simplicity, we only consider the case that the

angle between the new moving direction and the original is between 0 and &), we may
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obtain another blocking relation which is a representation of another ordered set Q, with,
however, the same underlying set as P. Q is called a reorientation of P with respect to the
representation R of P, for short, reorientation.

Our aim here is two-fold. How many reorientations can P have? What area is
needed on the plane to represent P, using say line segments for figures and only integer
coordinate locations? A given truncated planar lattice may have different representations,
and different representations may, in turn, have different numbers of representations. For
example, the representation R) of the three-clement chain P, a>b>c has three reorientations,
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Figure 3

while the representation R; of this three-element chain has 7 reorientations (cf.Figurc 3).

We adopt the following notation.
Reor(R, P)=/{Q: Q is a reorientation of P with respect to the representation R of P}|.
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For brevity, write Reor(P)=max{ Reor(R, P) : R is a representation of P}.

THEOREM 1. Let P be an n-element (truncated) planar lattice. Then,
nlog4 n-(1+ 1/In 4)n < Reor(P) <n(n-1) +1.

THEOREM 2. (1) Let C be an n-element chain. Then, Reor(C) =n(n-1)+1.
(2) Let A be an n-element antichain. Then, Reor(A) 2 n(n-1).

THEOREM 3. For arbitrary integers n and m, there is an n-element planar lattice P such
that

Reor(P) < 2m242 y pl+l/m

We turn now to representations in which all figures are line segments. Actually, any
truncated planar lattice has a representation in which all figures are parallel segments, each
with integer length and each of whose ends has integer coordinates. Call such a
representation a parallel segment representation. What is the smallest area of a parallel
segment representation ? (See [2], [6], [7] for a discussion of small area representations of
diagrams of orders and planar graphs using integer coordinates.)

For a parallel segment representation R of a truncated planar lattice P, let Area(R,P)
stand for the area of the smallest upright rectangle enclosing R . For example, for the

representation R of the ordered set P illustrated in Figure 5, Area(R, P)=13 x 7=91, and
for the representation R of Q illustrated in Figure 6, Area(R, Q)=55.

THEOREM 4. Let P be an n-element truncated planar lattice. Then

min{Area(R,P): R is a parallel segment repesentation of P} < n(n-1)/2.
and this is best possible (Figure 5).
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Although Reor(R,P) is big for the representations in Theorem 2, the representations
have 'large' areas. If the segments of a parallel segmant representation R of an ordered set
P are confined in the smallest area, is Reor(R, P) necessarily small ? It turns that it is not
the case. :

THEOREM 5. For any n, there is an n-element truncated planar lattice P such that some
parallel segment representation R of P satisfies the following conditions:
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1) Area(R, P)=min{Area(R;, P) : R, is a parallel segment representation of P };
2) Reor(R, P)=0(n2/ Inn) (Figure 6).
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We may enumerate the blocking relations in space, too. That is, given a

representation in space of an ordered set, how many reorientations are there by changing
the direction of movement of the figures, each, again, assigned the same direction ? Even
for the simple ordered set P consisting of n disjoint noncomparable two-element chains has
at least 20 reorientations with respect to some representation of P.
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