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1 Background

Multifingered articulated hands have been proposed and studied by many members of the
robotics community. By introducing dexterous hands as replacements for two stick end effectors,
we seek to augment the manipulative capacity of robots with fine position and force control,
thus increasing the reliability and complexity of task performances.

The effort to understand dexterous hands has been mostly concentrated in the area of
grasping [Ngu86,MSS87,Bas88]. Grasps have been analyzed with respect to the number of
fingers involved, the type of contact between the fingers and the objects, and such properties as
equilibrium, stability, force closure, etc. In [Ngu86), Nguyen proposes an algorithm to synthesize
force closure, stable grasps. However, little has been done to study what a mechanical hand
can do with a securely gripped object. In [Mas82], Mason looks at the manipulation of objects
through pushing and in [Bro87], Brock provides a framework for studying object manipulation
through controlled slip.

We are interested in developing algorithms for automated manipulation. We define the
manipulation of an object by a mechanical hand to be the reorientation of the object by some
degrees about some axis. In the process, the hand never lets go of the object. One way of doing
such rotations is by using a hand with a revolving wrist. Although this is a very simple solution
to the problem, it is far from being sufficient. The main reason is that a revolving wrist only
gives us rotations about one ( say, z ) axis. Therefore, we will focus on solutions that exploit
the multifinger structure of mechanical hands. The rotations will be accomplished by finger
motions rather than by a wrist motion.

1.1 Assumptions

The results presented here are for polygonal objects, robot hands with three or four fingers
and frictionless point contacts between the fingers and the object. We are currently working
on extensions to polyhedra, in the presence of friction.

We would like to accomplish the rotation of our object by starting with a force closure grip
of the object and then by generating new force closure grips. A grasp is called force closure if
an arbitrary force can be exerted on the object through the set of contacts. This is equivalent
to saying that the fingers can resist any force applied on the object.

*This work has been supported by the Advanced Research Projects Agency of the Dept. of Defense under
ONR Contract N00014-88K-0591, ONR Contract N00014-89J-1946, and NSF Grant DMC-86-17355.
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2 The rotation of a polygon

2.1 Preliminary lemmas

For now, we restrict ourselves to triangles. The generalization will be presented in section 2.3.

Notational conventions: Let A ABC be a triangle and fi, f2, f3 a set of fingers contacting
BC, AB, AC at M, P, Q, respectively. In addition, we ask that f; LBC, f,LAB, f31L AC and
that 3G = f; N f,N f3, the intersection of the finger force directions. These requirements allow us
to apply our results to gripping with point contacts in a frictionless environment. We call G the
center of the grip. Let P and Q be two points fixed in the plane such that AABC is constrained
to maintain continuous contact with P and Q. We associate the vectors p;,p2,P3,q1,¢2 to the
points C, B, A,Q, P in R?, in some coordinate system. See figure I.

Lemma 1: AABC moves such that the vertex A and the center of grip G rotate on the
unique circle defined by A, P, G and Q. No other motion is possible for the triangle. The
transformation which represents this motion is of the form

cosf sinf a
T=| —sinf cosf b

0 01

Here, 6 is the rotation angle with rotation matrix Ry and u = (a,b)T is the unique associated
translation, given by:

_ __det(qug,qz)qz det(Roq1,q1)
det(g2,q1) det(q:,92)

Corollary 1.1: The instantaneous center of rotation is the center of the grip.

Lemma 2: Let hy be the height of the triangle at A and let D be the intersection of the
force direction f; with circle(A4, P,G,Q). M moves on a circle of center D and radius equal to
the length of hy4.

Corollary 2.1: Given a triangle and two fixed points in space which slide on two of the
triangle’s edges and a third point fixed on the other edge, the motion of the triangle is unique,
and it is equivalent to the composition of a fixed rotation and some fixed translation. If
f1, fa, f3 are the respective force directions at the points of contact, then the triangle is fixed
if 3G = fi N f2 N fa; the triangle moves clockwise if the contact f3 lies to the left of the
perpendicular drawn from the intersection point of f; and f, onto the respective edge, and
moves counterclockwise otherwise.

Lemma 3: Let AABC be a triangle as before, with A acute and let f3 be the finger pushing
on BC. If P and Q are such that | PQ |< hp and f3 causes clockwise rotations, or if P and Q
are such that | PQ |< hc and fs causes counterclockwise rotations, then the triangle reaches a
configuration in which it is blocked, i.e. f3 can no longer cause motion by pushing.

2.2 Algorithm for rotations of triangles

These geometric results suggest ideas for algorithms to control the motion of a triangle by
controlling the tracking of a finger on an edge. The main idea is that by keeping two fingers
fixed and by displacing the third, the three force directions no longer meet at a point and the
grip is no longer force closure. This causes the triangle to move until all three force directions
converge to the same intersection point. As the triangle rotates, all the contact points slide on
their respective edges. The rotation can continue until one of the fingers is about to slide off
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its edge, or until the triangle can no longer move. At such a point, it is possible to continue the
motion of the triangle by assigning one of the previously fixed fingers to push, and by making
fixed the finger that pushed previously. Thus, the range of the rotation angle can be increased
by changing the pair of fixed fingers. In addition, we want our algorithm to be robust. In our
framework, robustness means the ability to handle the uncertainties of the real world, by not
requiring a priori knowledge of the geometry of the object, or exact arithmetic to determine the
positions of the fingers. One strategy that reduces these knowledge requirements is sensing. By
adding sensing capabilities to the fingers, some of the calculations can be replaced by contact
sensing. Lemma 3 provides a condition for robustness. We notice that such an algorithm for
rotations of angles > 27 performed by a three finger hand requires complete revolutions of the
fingers. To bound the finger motions, we use a four finger hand.

Algorithm: Given a triangle, four fingers, and a desired reorientation angle, a rotation can
be performed as follows. See figure 3.

1. Each edge of the triangle is assigned to one of the four fingers. The other finger is free.
The rotation angle is initialized to zero.

2. Two of the assigned fingers are selected to be fized and the other one to push.

3. The pushing finger slides in the same direction as the desired motion, thus causing a
rotation according to lemma 1 and corollary 2.1. Update the total rotation angle.

4. Reassign the fingers. If in the ith iteration we have that fimoeds is free, f(i+1)moas and

 fi+2)mods are fixed and f(;3)mods pushes, then for the (i + 1)t* iteration fimods Pushes,
f(i+1)mod4 is free and f(i12)moda and f(i+3)mods are fixed. With these assignments, repeat
step 3, until the amount of rotation matches the desired rotation amount.

The robust version of this algorithm differs only in step 3. If the conditions of lemma 3
are met, instead of precalculating the amount of slip for the pushing finger, the finger simply
pushes until it senses that the triangle no longer moves, i.e. until it senses that the triangle has
reached a blocking configuration.

2.3 Rotations of polygons

The algorithm developed for a triangle generalizes to polygons. The main idea for the general-
ization is that for any convex polygon, except for rectangles, by extending three of the polygonal
edges, we obtain a minimal triangle which contains the polygon. For any convex polygon, except
for rectangles, there is at least one such triangle, and possibly more. The larger the number of
edges of the polygon, the larger is the number of minimal containing triangles.

Let II be a polygon with edges e;, €2, ..., én. The following definitions and lemmas are needed
to extend the result from the case of acute triangles to a decision procedure for arbitrary convex
polygons.

Definition 1: A set of candidate blocking regions is a set of three mazimal edge regions
{1‘1 = (Ul,U2),T2 = (‘G,Vg), r3 = (Wl,Wg)} such that Be,-,ej,ek distinct with T C_: €5, T2 Q
e;,73 C e and U1 V) Le;, U,Vale;, ViW; Lex and VoW, Lei. See figure2.

Definition 2. A candidate blocking distance is the length of any line parallel to U;V; in the
trapezoid U, U;V,V;. The range of candidate blocking distances is denoted by Ay, r,.

The candidate blocking regions represent locations of the fingers for which the polygon
could be in a blocking configuration. That is, if f; € r1,f2 € 72 and f3 € 73, and the contacts
are at P,Q and R and PQLr; and QRLrj, then the polygon is in a blocking configuration.
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Notice that the condition given in the definition captures the ideas of lemma 3 for the case of
a polygon. In particular, 71,72 and r3 exist if €, €; is acute. The candidate blocking distances
represent the range of the distances between the fixed fingers that yield blocking configurations.

Lemma 4: Let II be a polygon and {r;,7,73} a set of candidate blocking regions. If d is a
candidate blocking distance, and the fixed fingers are on e; and e; at distance d apart and the
third finger pushes on e, then II reaches a blocking configuration.

Lemma 5: Let 11 be a polygon gripped in a blocking configuration corresponding to the
candidate blocking regions {ry, 7,73} on edges e;, €, ex. If there is a candidate blocking config-
uration {rz, 73,74} on edges ej,ex, e and A,y rg N Arw; = An # 0 and if the distance between
the fingers on e; and e is in the range of An, then the polygon can be moved from the initial
(blocked) gripped configuration to a new blocked configuration by keeping the fingers on e; and
ex fixed and by pushing on ¢;.

Theorem: A polygon can be rotated robustly, if it is possible to iterate the conditions in
lemma 5 until there is a repetition of the edges supporting candidate blocking regions. If the
polygon has n edges, then a repetition occurs after at most n iterations.
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Figure 1: Construction illustrating the triangle lemmas
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Figure 2: Construction of the candidate blocking regions
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After the fifth step:
f2 is free; f, pushes;

Figure 3: Five iterations of the algorithm



