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Abstract

We study the problem of covering a simple polygon with a minimum number of squares,
possibly overlapping, all internal to the polygon. The problem has applications in VLSI mask
generation, incremental update of raster displays, and image compression. A polygon is
specified by the (cyclically ordered) sequence of its n vertices. We give an algorithm for cover-
ing a simple polygon with squares in O (nlog*n) time. In the special case where the coordi-
nates of the vertices are integers, a simplified version of our algorithm, has a time complexity
which is linear in the size of a bit-map representation. We also consider non-simple polygons. In
this case the problem is known to be NP-Hard. We show that a factor 2 approximation can be
found in polynomial time.

1. Introduction

We consider the problem of finding a minimum square cover of an orthogonal polygon. An
orthogonal polygon is a polygon whose edges are either horizontal or vertical. A square cover
of a polygon P is a collection of squares contained within P, whose union exactly covers P. A
minimum square cover is one with the minimum number of squares. Obviously, we can concen-
trate only on maximal squares. A square in the polygon is said to be maximal, if it is not con-
tained by any larger square in the polygon.

Our research was motivated by the paper of Scott and Iyenger [SI86] where they argued
that square covering is an efficient method to store images, mainly in comparison to the known
quad-trees approach [SL87], [HS79]. Moreover, they revealed some of the characteristics of this
method such as simplicity, limited space demands and invariance in the plane under shifts and
rotations. In their work they developed a practical heuristic algorithm to find a square cover (not
necessarily minimal), empirically illustrating better performance than all of the quad-tree
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methods they tested.

Aupperle at al. [ACKO88] noted another practical application which we quote. The medial
axis (also called the symmetric axis ot skeleton) of a polygon is the locus of centers of maximal
disks contained in the polygon. When specialized to the Lo metric for applications to digital
images, the medial axis is the locus of centers of maximal squares of odd side length [RK82].
The digital medial axis transform (MAT) is used for picture compression: simple images may be
covered by few squares, and easily reconstructed from the MAT [WBR86].

Additional applications are mentioned by Morita [M89], such as remote sensing, VLSI
mask generation, incremental update of raster displays, and object representation for sequential
frames of dynamic polygonal scene.

1.2 Related Work

The previous work on the square cover problem used a bit-map representation for the input
polygon [AO81], [SI86], [ACKO88], [M89]. A bit-map representation of a polygon, or some-
times referred to as a digitized image, is a zero-one matrix, where one represents a point within
the polygon and zero otherwise. In respect to this representation, we measure the complexity in
terms of the number of points in matrix p.

Recently Aupperle, Conn, Keil and O’Rourke [ACKO88] showed that the minimum square
cover problem is NP-Hard for images containing holes. In the case where the image is hole-free,

they provided an O (p 15Y time algorithm. They translate the problem to covering chordal graphs
by cliques (equivalent to find minimum vertex cover). Each node within the graph is associated
to a pixel in the bit-map. Two nodes are connected by an edges iff the corresponding pixels are
within the same some maximal square. Clearly, the nodes of a maximal clique correspond to the
pixels of a maximal square. Since the image is hole-free, all cycles in the graph are triangulated,
therefore, the algorithm of Gavril [G72] for covering chordal graphs by minimum number of
cliques can be used. To decrease the size of the graph they generate a reduced graph, where each
maximal clique (square) is translated into a single node.

A square cover is called minimal, if has no smaller subset that forms a cover. Morita [M89]
recently developed a parallel algorithm which finds a minimal square cover for bit-maps which
may contain holes. The sequential time of this algorithm isO ().

1.3 Bit-maps vs Segment Representation

It seems that the original motivation to study the square cover problem was derived from
the area of image processing and other related fields. This may explain why all the previous
work concern only polygons with integer coordinates. Furthermore, the time complexity was
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measured in terms of the input bit-map size p.

For many problems concerning polygonal shapes, the input is chosen to be a segment
representation, i.e. the polygon is specified by a cyclically ordered sequence of its n vertices.
We argue that this representation should be preferred, not only theoretically, but also for all of
the mentioned practical applications.

In order to illustrate that a bit-map based algorithm may, in the worst case, be exponential
(or at the most pseudo-polynomial) in the segment representation input size, consider the follow-
ing example: The input polygon ( (0,0), (0,y), (1,y), (1,0) ) which consumes only O (logy) space,
requires at least O (y) space for the bit-map representation. On the other hand, it may be
worthwhile to spend an O (p) time in translating a bit-map representation into a segment
representation, since p > £(n), and for most practical applications p > n. This translation can be
implemented on-line, in reading image files. This method requires only O (n-logp) bits rather
than O (p).

The usage of the chordal graph method is elegant and natural for bit-maps. In the segment
representation the associated chordal graph, and even the reduced one, may have infinite cardi-
nality. In our method, the idea of using local optimization approach is kept i.e. selecting, itera-
tively, the next "essential" square. Local optimization algorithms differ in the policy adopted for
the next locgl optimization step. The core of our algorithm is the chois of a specific policy
derived by additional topological properties.

1.4 Outline of The Algorithm

In this subsection we give an intuitive description of our O (nlog*n ) algorithm.

Imagine that in the beginning of the process you have a piece of black paper cut in the
shape of the given input polygon. As the algorithm proceeds, we paint the covered areas with a
grey chalk.

Let s be a maximal square in the polygon. Denote by Black(s) the set of the black
(uncovered) points in s. A square s is maximal black if there is no square s; such that
Black (s) c Black (s,). A maximal black square s is essential if there exist a point such that s is
the only square to contain it.

Algorithm A:
While there exist essential square s
"Paint s grey.
Assume the paper is now all painted grey; then the set of the selected squares yields a
minimum square cover. This fact is derived from the following local optimization invariant:
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there exist a minimum square cover for the polygon which contain all of the previously selected

squares.

A grey point is reducible if it does not included in any maximal black square. Now, for
algorithm B, we have to get the scissors ready.

Algorithm B:
While there exist essential square §
paint s grey and cut all reducible regions.

Cutting reducible regions is harmless, and therefore the local optimization invariant
remains valid.

The approach: select "essential" and eliminate “reducible", is the same for all special cases
of the set-covering problem, including covering chordal graphs by cliques [G72] and vertex
cover [NT75], [BE85]. Unlike those problems, in our problem, both, the number of squares
(sets) and the number of points (set elements) are infinite. This fact would not affect the correct-
ness of the local optimization approach, as long as an essential square can be found, and in each
iteration the problem size (input+output) is reduced. In order to achieve this goal we concentrate
on special type of essential squares called continuators. A continuator is a maximal square hav-
ing a continyous intersection with the polygons’ contour (for a wider family of squares contain-
ing a knobs see [AO81],JACKO88]). The main idea is that if the residual paper does not contain
reducible regions then any continuator is essential.

Algorithm C:
While there exist continuator §
if 5 is essential then paint s grey.
cut s reducible regions.

We prove that any simple polygon contains a continuator. This, together with the local
optimization invariant, implies partial correctness for Algorithm C. By charging each operation
to either input (vertices) or output (cover squares) we show that the number of iterations is
O (n+k). This algorithm can be implemented so after a preprocessing phase consisting mainly
of triangulating the polygon, each output operation costs O (1) time, while each input operation
costs (logn) time. This leads us to O (nlogn +k ) time complexity. Now, we restrict ourselves
to a continuator with an additional topological property. This leads to an implementation with
time complexity of O(1) for output, but, 6 (log*n) for each input operation. Since the best
known algorithm for triangulation (preprocessing) has O (nlog*n) time complexify [C90], the
total time is reduced to O (nlog*n +k).
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As it presented, the algorithm is output sensitive. Note that the output size may be even
exponential in the input size (the polygon is a long rectangle). O’Rourke suggested a way to
overcome this problem by changing the output representation. A set of output squares that yield
a partitioning of a rectangle, would be replaced by this rectangle. Now, the output size is O (n).
Fortunately, our algorithm can be implemented, so each such a rectangle requires O (1) opera-

tions.
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