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Abstract: By using a divide-and-conquer strategy, we can naturally extend the linear-time
bound on the construction of Voronoi diagram of a convex polygon to include an O(nlogr)-
time bound on the construction of a bounded Voronoi diagram of a triangulated polygon with
r reflex angles. A partition of a simple polygon into simple polygons is an m-approximation
of the bounded Voronoi diagram of P if none of the regions in the diagram intersects more
than m edges in the partition. Given a convex m-approximation of the bounded Voronoi
diagram of P, we can construct the bounded Voronoi diagram of P in time O(nm?). We also
discuss cases of restricted convex m-approximations of P where it is possible to construct
the diagram for P in time O(nm).

1. Introduction

Planar point sets and simple polygons are special cases of the so called planar straight-liné
graphs (PSLG for short) [PS]. A PSLG G is a pair (V, E) such that V' is a set of points in
the plane and E is a set of non-intersecting, open straight-line segments whose endpoints
are in V. The points in V are called vertices of G, whereas the segments in E are called
edges of G. If G is a simple cycle, it is called a (simple) polygon. If G has no edges, it is
a planar point set. The so called bounded Voronoi diagram of a PSLG G = (V,E) (called
Voronoi diagram with barries in [L89, LL90]) can be defined as follows [L89,WS].
For v € V, the region P(v) consists of all points p in the plane for which the shortest, open
straight-line segment between p and a vertex of G that does not intersect any edge of G is
(p,v). The minimal set of straight-line segments and half-lines that complements G to the
partition of the plane into the regions P(v), v € V, is called the bounded Voronoi diagram of
G ( Vorb(G) for short ). The maximal straight-line segments or half-lines on the boundaries
of the regions P(v), v € V, that do not overlap with edges of G, are called edges of Vorb(G).
The endpoints of edges of Vorb(G) are called vertices of Vord(G).
Note that if G is a planar point set then Vorb(G) is just the standard Voronoi diagram of ¢
[PS]. We shall denote the standard Voronoi diagram of a planar point set S by Vor(S). For
a PSLG G, Vorb(G) has several properties analogous to those of standard Voronoi diagrams
(comp. [L89] with [PS]). Every edge of Vord(G) is a continuous part of the perpendicular
bisector of a pair of vertices of G from which the edge is visible. Next, every vertex of
Vorb(G) is the common intersection of at least three edges of Vorb(G) or residues inside
an edge of G. For all v € V, P(v) is a collection of polygonal sub-regions separated by the
edges incident to v. There are at most 3n — 6 edges in Vorb(G) (see [L89]). For convention.
given a simple polygon P, we shall denote by Vorb( P) the bounded Voronoi diagram of P
within P throughout the paper.
In [LL87], Lee and Lin presented an O(nlog n)-time divide-and-conquer algorithm for the
so called generalized Delaunay triangulation of a simple polygon which is the straight-line
dual (see [PS]) of the bounded Voronoi diagram of the polygon [L89,WS]. Later, Wang
and Schubert showed that the bounded Voronoi diagram of an arbitrary PSLG can be
constructed also in time which is asymptotically optimal [WS]. On the other hand, it is not
known whether the nlogn upper time-bound for simple polygons is asymptotically optimal.
Aggarwal put the above question on his list of important open problems in computational
geometry [A].

~ As the straight-line dual of the bounded Voronoi diagram of a simple polygon P can be
easily completed to a full triangulation of P, any fast algorithm for Vorb(P) yields a fast
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algorithm for a triangulation of P. For this reason, it is doubtful whether one could derive

a sub-n loglog n algorithm for Vorb(P) presently (see [TV]). On the other hand, Aggarwal,
Guibas, Saxe and Shor presented a linear-time algorithm for the Voronoi diagram of a set
of points which form a convex polygon [AGSS). They result can be stated equivalently as a
linear-time algorithm for the bounded Voronoi diagram of a convex polygon.

In this paper, we partially fill the gap between the linear-time upper bound for convex
polygons and the O(nlogn)-time upper bound for simple polygons. We observe that 1t is
possible to construct the bounded Voronoi diagram of a simple polygon P with n vertices
and r reflex angles within P in time O(nlogr) provided a triangulation of P is given. Next.
we introduce the concept of approximation of the bounded Voronoi diagram of a simple
polygon and derive upper time-bounds on the construction of the diagram in terms of a
parameter characterizing the goodness of the approximation and the number of vertices.
The latter approach has an analogy in recent exhaustive research on presortedness. It yields
fast algorithms for the bounded Voronoi diagrams of polygons for which good approximations
can be build easily.

2. Bounded Voronoi diagrams for polygons with few reflex angles

A partition of a simple polygon P is a finite set C of convex polygons lying within P such
that the insides of the polygons are pairwise disjoint and their union covers P. C is said to
be convex if each polygon in C is convex.

Given a triangulation of P, we can cancel each of the reflex angles in P by drawing at most
two appropriate edges from the triangulation incident to the vertex of the angle. Hence, we
have:

Lemma 2.1: Given a triangulation of a simple polygon P with n vertices and r reflex
angles, we can construct a convex partition of P consisting of O(r) convex polygons in time
O(n).

Combining the above lemma with the linear-time algorithm for the Voronoi diagram of a
convex polygon from [AGSS], and Chazelle’s polygon cutting theorem [C,L85], we obtain
our first result.

Theorem 2.1: Let P be a simple polygon with n vertices and r reflex angles. Given a
triangulation of P, we can compute Vorb(P) within P in time O(nlogr).

Proof: Assign weight 1 to each vertex of a reflex angle in P and weight 0 to the remaining
vertices of P. Recall Chazelle’s theorem on polygon cutting in its general weighted form
[C,L85]. By [C,L85], given a triangulation of P, we can find a diagonal that splits P into
two sub-polygons, each of total weight not greater than two thirds of the total weight of P
plus one, and also the whole family of such diagonals for sub-polygons recursively created.
everything in linear time.

The diagonal together with the diagonal family can be structured into a binary tree, say L.
where a diagonal d' is a child of a diagonal d if d' splits one of the sub-polygons resulting
from drawing d. Let h be the height of U. Observe that h = O(log ).

Let A be the partition of P into sub-polygons induced by diagonals from U. Each sub-
polygon a in A has O(1) reflex angles. We can trivially partition each of the sub-polygons «
into O(1) convex polygons by Lemma 2.1, correspondingly extending U by O(1) levels. Let
B be the resulting convex partition of P.

We compute Vorb(P) within P in a bottom-up manner. First, we apply the linear-time
algorithm given in [AGSS] to compute the diagram for each of the convex polygons corre-
sponding to the leaves in the extended U. Next, we move upwards U, computing at each
non-leaf node of T the bounded Voronoi diagrams of the sub-polygons corresponding to the
sons. The merging can be done in time proportional to the sizes of the diagrams, and conse-
quently proportionally to the sizes of the sub-polygons, see [LL86). Actually, in [LL86], Lee
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and Lin showed that the merging of the straight-line duals to the bounded Voronoi diagrams,

the so called generalized Delaunay triangulations, can be done in the polygon case in linear
time. As there are O(logr) levels in U, and the total size of the sub-polygons corresponding
to a given level is O(n), the whole procedure takes O(n log ) time.Q.E.D.

3. Constructing the bounded Voronoi diagram from its approximation

For a non-negative integer m, a partition of a simple polygon P is called an m-approximation
of Vorb(P) if for each vertex of v the region P(v) of v within P intersects at most m edges
in the partition.

Suppose a convex m-approximation of Vorb(P) is given. Our main tool in designing a
fast algorithm for Vorb(P) is the possibility of computing the intersection of the diagram
with a convex sub-polygon b efficiently provided that the sites whose regions in Vorb(P)
cover b are known. Note here that the above intersection is equal to the intersection of the
standard Voronoi diagram of the sites with b. The possibility of the efficient computing of
the intersection of the diagram with b is derived from a generalization of the linear-time
algorithm for the Voronoi diagram of a convex polygon discussed on p. 45 in [AGSS].

Lemma 3.1: Let b be a convex polygon in the plane, and let S be a set of points p1...., pk
in the plane such that for z = 1,...,k — 1, a continous piece of the boundary between the
regions of p;, pi4+1 in the Voronoi diagram of S crosses the boundary of b clockwise around
b. The intersection of b with the Voronoi diagram of S can be constructed in linear time.
Proof: It follows from our assumptions about py, ..., px and b that for: =1, ..., k—1, p; and
piy1 are Delaunay neighbours, i.e. they are adjacent in the Delaunay triangulation of S.
Apply the standard lifting map p(z,y) — (z,y,2° +y?) to S. It follows from the known
relationship between the Delaunay triangulation of S the convex hull of u(S) that for ¢ =
1,....k, (u(pi), u(pi+1)) is an edge of the convex hull (see [E]). Hence, the points p;, 1 =
1,..., k, satisfy the following condition:

(1) For i = 1,...,k — 1, there exists a plane which includes (p;, pi+1) and leaves all points in
S different from p; and p;+1 in the same halfplane.

Consider any subsequence p;,, ..., pi, of the sequence py, ..., px. Let S " be the set of elements
in the subsequence. It follows from the convexity of b and the convexity of regions in the
Voronoi diagram of S’ that for j = 1,...,] — 1 a continous piece of the boundary between
the region of p;; and p;;,, crosses the boundary of b. Hence, analogously as previously, we
derive the following condition which is a generalization of condition (1).

(2) For j = 1,...,] — 1, there exists a plane which includes (pi;» pij4,) and leaves all points
in S’ different from p;; and p;;,, in the same halfplane.

By (2), we can compute the convex hull of x(S) using a generalization of the algorithm for
Voronoi diagrams of convex polygons given in [AGSS] (see p.45) in linear time. In turn,
given the convex hull of u(S), we can easily compute the Voronoi diagram of S in linear
time by the above relationship [E]. The intersection of the Voronoi diagram of 5 with b
can be found in linear time by the convexity of the regions in the Voronoi diagram and the
convexity of b (see [PS]). Q.E.D.

Theorem 3.1 does not yield an obvious way of computing Vorb( P) if a convex m-approximationf]
of P is given. Simply the interactions between vertices of P on different sides on the edge .
between two convex parts can be two-way, i.e. regions in Vorb(P) belonging to vertices on
both sides of the edge can cross it. To start with, we shall consider a simpler situation where
the interaction is only one-way. We can formalize such a situation as follows.

Let B be a partition of a simple polygon into convex parts. Consider the directed graph G
whose nodes one-to-one correspond to the convex polygons in B, such that (v, v') is an edge

in G iff the convex polygons corresponding to v, v', say b, ', share an edge which is crossed
by regions of vertices lying on the side of b. We say that B is acyclic if G is acyclic.
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Given an acyclic convex m-approximation of Vorb(P), where m is small, we can efficiently
compute Vorb(P) according to the following theorem.

Theorem 3.1 Let P be a simple polygon on n vertices. Given an acyclic convex m-
approximation of P consisting of O(n) polygons, we can construct Vorb(P) in time O(nm).
Proof: Let B be the m-approximation of P. For each b in B, set s(b) initially to the list of
sites within b in clockwise order around b, i.e. the list of vertices of P within b in clockwise
order around b. Set G to the directed acyclic graph corresponding to B. Next, iterate the
following steps until G is empty.

Step 1. Pick a vertex v in G with indegree zero, delete it from G and set b to the member
of B corresponding to v.

Step 2. Construct Vor(s(b)) Nb.

Step 3. For each b’ adjacent to b, appropriately augment s(b') with the sites in s(b) whose
regions cross the edge between b and b’ in Vor(s(b)), according to the clockwise order of
their intersections with b.

Finally, glue all the computed fragments of Voronoi diagrams within &’s in B and output
the result as Vorb(P). .

We can prove by induction on the number of iterations that whenever V or(s(b)) Nb s
computed, the list s(b) contains exactly all sites whose regions in Vorb(P) intersect with
b in clockwise order of their intersections with b. This combined with the convexity of b
implies Vor(s(b)) Nb = Vorb(P) Nb. Thus, the above algorithm indeed produces Vorb(P).
Let us estimate the time performance of the algorithm. The initialization preeceding the
iterated sequence of instructions takes linear time. To implement Step 1, we maintain a list
of vertices which have indegree zero currently. Whenever we delete a vertex v from G, we
check whether the vertices in G it has been adjacent to already reached zero indegree. If
so, we put them respectively on the list. It is easily seen that the total work done is Step
1 is proportional to the sum of degrees of vertices in the initial graph G which is O(n) by
the planarity of G. Consider Step 2. By Lemma 3.1, we can implement it in time O(#s(D))-
By the definition of m, a site can occur in at most m different lists s(b). Therefore, Step 2
totally takes O(nm) time. Step 3 takes time proportional to the number of edges of b and
the number of edges in Vorb(P) N b. By the linear size of G and Vorb(P), and the upper
bound m on the depth of B, these numbers sum to O(nm). Also, the final gluing of the
produced pieces of Vorb(P) can be done in time O(Xyep #s(b)) which is O(nm). Q.E.D.

In general, we cannot ensure acyclicity of a convex m-approximation of Vor(P) avaible. We
pay for it by slowing down our method of constructing Vorb(P) as the following theorem
shows.

Theorem 3.2: Let P be a simple polygon on n vertices. Given a convex m-approximation
of P consisting of O(n) polygons, we can construct Vord(P) in time O(nm?).

Sketch: Let B the convex m-approximation of P. The directed graph G corresponding to B
may contain cycles. Therefore, comparing with the acyclic case. we have to spend more time
to stabilize the lists s(b) consisting of candidates for sites whose regions cover bin Vorb(P).

For each b in B, we initially set s(b) to the list of vertices of P within b in clockwise order
around b as in the proof of Theorem 3.1. Next, we iterate the following instruction block
until all the lists s(b) stabilize.

1. For each b in B, compute Vor(b(s)) N b.

2. For each b in B, set s(b) to the list of sites within b plus all the sites whose regions cross
the boundary of b in Vor(b'(s)) (computed in Step 1), where b’ € B shares an edge with b,
in clockwise order of their regions intersections with b.

When all the lists s(b) stabilize, we glue the Voronoi diagram fragments Vor(s(b))nd, b€ B,
and output as Vorb(P).
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For the sake of correctness proof for the above algorithm, we assume the following notation.

For b € B, t(b) is the set of sites, i.e. vertices of P, whose regions in Vorb(P) cover b.
Next, we define the l-bounded Voronoi diagram of P, Vorb(P), analogously as Vorb(P)
(see Introduction) additionally requiring that the segment (p,v) between a point p and a
site v passes through at most [ different convex polygons in B.

Now, by the induction on the number [ of iterations of the block, we prove that the union
of Vor(s(b)) Nb, b € B, forms Vorb(P) just after the I-th iteration. It follows from the
definition of m that after the m-th iteration, the lists s(b), b € B, never change. Hence, the
algorithm terminates after performing m + 1 iterations of the block, and then gluing the
diagram fragments.

Reasoning analogously as in the proof of Theorem 3.1, we infer that the initialization takes
linear time, the I[-iteration of the block takes time O((size(Vorbi(P)) + n)m), and gluing
the pieces of Vorb(P) O(nm) time. Again, by induction on I, we can prove that Vorb(P)
has a linear number of edges. Thus, the algorithm runs in time O(nm?). Q.E.D.

4. Final Remarks

1. Algorithms for Vorb(P) given in the proofs of Theorems 3.1 and 3.2 seems to admit
efficient parallel versions.

2. A diagonal of a PSLG H is an open straight-line segment that neither intersects any edge
of H nor includes any vertex of H and whose both endpoints are vertices of H. In [LL90],
Levcopoulos and Lingas proved that given a PSLG H and Vorb(H), we can find a shortest
diagonal of H in linear time. Thus, Theorem 2.1 and 3.2 can be used to find a shortest
interior diagonal of a simple polygon efficiently in case it has few reflex angles or a good
m-approximation of Vorb(P).
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