214

An Efficient Divide-and-Conquer Approximation Algorithm for Hyperrectangular Partitions}

Teofilo Gonzalez, Mohammadreza Razzazi,
Department of Computer Science
The University of California
Santa Barbara, CA 93106

and

Si-Qing Zheng
Computer Science Department
Louisiana State University
Baton Rouge, LA 70803-4020

EXTENDED ABSTRACT .

The problem of partitioning a polygon is fundamental in Computational Geometry, and as a result of this it
has been studied under many different objective functions. Lingas et. al. ([LPRS]) investigated the problem of par-
titioning the inside of a rectilinear polygon with holes into rectangles, the goal was to obtain a partition with
minimum length of partitioning edges. In VLSI design, the problem of dividing routing regions into channels can
be reduced to this partitioning problem ([R]).

A rectilinear boundary is a simple polygon with the additional constraint that all of its sides are either parallel
or perpendicular to each other. A hole is a simple rectilinear polygon located inside the rectilinear boundary. There
cannot be holes inside a hole. A single point inside the boundary is called a degenerate hole. A figure is a rectil-
inear boundary which may contain an arbitrary number of nonoverlapping holes. A rectangular partition of a figure
is a set of line segments lying within its boundary and not crossing any non-degenerate hole so that when added to
the figure, the area not enclosed by holes is partitioned into rectangles that do not contain as interior points degen-
erate holes. The partitioning line segments are called edges. For every problem instance / and every set of edges
E() in a feasible solution, we use the function L(E(/)) to represent the sum of the length of the edges in E(/). A
minimum edge length partition of a figure is a rectangular partition with least L(-) among all rectangular partitions.
An approximation algorithm is said to have an approximation bound of C if for every problem instance, I, L(E) <
C L(0), where E is the set of edges in the solution generated for I by the approximation algorithm, and O is the set
of edges in an optimal solution for /.

Lingas et. al. [LPRS] showed that when there are interior holes, the problem of finding minimum edge length
rectangular partitions is NP-hard. The problem remains NP-hard even when all the holes are degenerate holes and
the boundary is a rectangle [LPRS]. Hereafter we shall refer to this restricted problems as the RG—-P, problem.
Several approximation algorithms for the general problem exist (see [L], [DC], [L1] and [L2]). The algorithms with
the smallest approximation bound are the ones reported in [L1] and [L2]. Furthermore, the algorithm given in [L2]
uses the algorithm reported in [GZ1] for the RG —P, problem as a sub-procedure. Other approximation algorithms
for the RG—P , problem appear in [GZ1], [GZ2], [GZ3], [DPS] and [GRSZ]. In table I we summarize the currently
best approximation algorithms for the RG —P , problem.

 This research was suppmedinplnbymeNaﬁomlScienceFotmdationunderGrmlDCR-8503163

215

Approximation algorithms for partitioning a rectangle
Approximation Bound | Time Complexity Bound Reference Method
3+43 O(n log n) [GZ1], [L2] divide and conquer
3 o(n% [GZ2] transformation
1.75 o@n®) [GZ4] dynamic programming

Let P be a set of points located inside a hyperrectangle (rectangle if d = 2) R. The RG—P, problem, which is
a generalization of the RG—P , problem to d dimensions, consists of partitioning R into hyperrectangles (rectangles
if d = 2) by introducing a set of hyperplane (line if d = 2) segments of least total (d-1)-volume (length if 4 = 2).
Each hyperrectangle (rectangle if d = 2) in a valid partition cannot contain points from P as interior points. For
every problem instance and every set of edges E(I) in a feasible solution, we use the function V,_,(E()) to
represent the sum of the (d-1)-volume of the hyperplane segments in E(/). This problem has been recently been
considered in [GRSZ] where a dynamic programming approximation algorithm based on guillotine partitions is
analyzed. Their algorithm takes O(n24*!) time and generates solutions within 24 - 4 + 4/d times the optimal solu-
tion value. An application for the RG —P 5, is discussed in [GRSZ].

In this paper we present a divide-and-conquer algorithm that takes O(dn log n) time and it generates solu-
tions similar to the ones generated by the algorithm in [GZ1]. The main difference between the result in the paper
and the one in [GZ1] is that the new approximation bound is smaller (four instead of 3 + y3), the new algorithm is
simpler (we only introduce one cut at each step), the proof is much simpler than the previous one (there are fewer
cases and the proof for each case is simpler), and the new algorithm has the approximation bound 24 for alld > 2.
With respect to the results in [GRSZ], the algorithm in this paper is faster (O(dn log n) instead of O(n 24+1y) but the
algorithm in [GRSZ] always generates solutions which are closer to optimal.

THE ALGORITHM

The RG-P, problem is formally defined by I = (R=(0, X), P), where 0 and X define a hypermrectangle or
boundary R (0 =(0;,03, ..., 04) is the "lower-left" comner of the boundary (origin of I),and X = (X, X, ... , X4)
are the dimensions of the boundary) in d-dimensional Euclidean space (E),and P = { py, P2, - P } IS asetof
points (degenerate holes) inside hyperrectangle R. We define Xras Xy - X5 - ... * Xiy Xy * oo X4,and X; ; asX;
“Xiy * e+ X;, fori < j. We shall refer to the 4 dimensions (or axes) of E¢ by the integers 1,2, ..., d (in 2-space we
have the first dimension (x-dimension, x-axis, or 1-axis) and the second dimension (y-dimension, y-axis, or 2-axis))

We use E,,, to denote the solution generated by our algorithm. Initially E,,, is empty. Our algorithm, which
we refer to as procedure PARTITION, first checks if P is empty and if so, it retuns. Otherwise, it introduces a
mid-cut or an end-cut after relabeling the axes so the X, =X, >... 2 X,. A mid-cut is a hyperplane segment orthog-
onal to the 1-axis that intersects the center of the hyperrectangle and an end-cut is a hyperplane segment orthogonal
to the 1-axis that contains either the "leftmost” or the "rightmost" point in P. A mid-cut is introduced when the two
resulting subproblems have at least one point each. Otherwise, an end-cut is introduced. The end-cut intersects the
leftmost point if such a point is not located to the left of the center of the hyperrectangle, otherwise the end-cut
intersects the rightmost point. We shall refer to the two resulting subproblems as /,=(R;,P,) and I,=(R2,P). The
length along the first dimension of R, (R) is referred to by X; (X).

216

We define the function, LB(/), by taking a "portion” of the (d -1)-volume at each step of our recursive algo-
rithm as follows.

(0 P=2
X7 an end-cut is introduced, P, = @ and P, = @
LB(I,)+LB(Iy) an mid-cut is introduced
LB(I) =9 LBU)+min(X7,X X34) an end-cut is introduced, P, # @ and P, = @
LB(I,)+min{ X;,X X34) an end-cut is introduced, P, = @ and P, # @
.

Lemma 1: For any problem instance I, LB(1) < V,_,(E,, (1))
Proof: For brevity the proof is not included.

O

Assume that X, 2 X, > ... 2 X,;. For convenience we define X, = X, and X,,; =X, /3. Note that X, < 2X,
and X, >2X,,, forall/. A problem instance / = (o ,X ,P)issaidtobe of typei (0<i<d)if X, <2X;,, and X,
> 2X;,,. We define the CARRY function as follows: (d-i)X 7 + 2“‘ X; if I istypei forO<i <d-1,and (2d-1) X7

j=1

if I is type 0. One may visualize the algorithm as follows. Whenever a hyperplane segment is introduced by the
algorithm (mid-cut or end-cut) it is colored red, and when a lower bound corresponding to a hyperplane segment is
detected it is marked blue. Our approach is to bound the sum of the (d-1)-volume of all the red segments by 2d
times the sum of the (d-1)-volume of the blue segments. The idea behind our proof is that the CARRY function
corresponds to the (d-1)-volume of some red segments which have not yet been accounted for by blue segments
and which will be accounted for by some blue segments which will appear in recursive calls from /. The worst case
bound for our approximation algorithm is given by theorem 1.

Theorem 1: For any problem instance /,
() Va1(Egp(1))+CARRY(/)<2d -LB(]),and
(i) Vao1(Egpz(1))+CARRY(J)<2d - V4 (Epp(1))
(i) Vio1(Eqpa(1)) $2d Vaoi(Egpe (1)),

Proof: For brevity the proof is omitted.

a

For all & > 0, there are problem instances such that V;_;(Ep,;) = 2d V41 E,,) - €. For brevity we do not
discuss them in detail. A straight forward implementation of algorithm PARTITION requires O (dn?) time, where
n is the number of points in P. However, procedure PARTITION can be implemented to take O(dn log n) time.
The idea is to translate each point into a tuple of d integers in the range [1,n] and to represent the set of points by a
multilinked data structure which can be easily traversed in several directions.

Theorem 2: Procedure PARTITION and all the required preprocessing take O(dn log n) time.
Proof: For brevity the proof is not included.

217

In practical situations one could execute several variations of the algorithm presented in this paper (e.g., the
one in [GZ1]) and then select a solution with least (d-1)-volume. We conjecture that an approximation algorithm
based on this approach generates solutions that are very close to optimal. However, proving a smaller bound for this
approach seems to be difficult. A postprocessing procedure that transforms E_,, into a feasible solution in which
each hyperplane segment includes at least one point can be easily constructed. In general it will not generate better
solutions, but in many cases the solution generated by our algorithm will be improved.

[(DC]
[(DPS]
[GRSZ]

[GZ1]

[GZ2]

[GZ3]

(K]

L]

[LPRS]

[L1]

[L2]

R]

V. References.

Du, D. Z. and Chen Y. M., "On Fast Heuristics for Minimum Edge Length Rectangular Partition,"
Technical Report, MSRI 03618-86, Feb. 1986.

Du, D. Z., L. Q. Pan and M. T. Shing, "Minimum Edge Length Guillotine Rectangular Partition,”
Technical Report, MSRI 02418-86, Jan. 1986.

Gonzalez, T., M. Razzazi, M. Shing and S. Zheng, "On Optimal d-Guillotine Partitions Approximat-
ing Hyperrectangular Partitions,” Technical Report TR-89-25, CS Dept., UCSB, October 1989.
Gonzalez, T. and S.-Q. Zheng, "Bounds for Partitioning Rectilinear Polygons”, Proc. Symp. Compu-
tational Geometry, June 1985, pp. 281-287, (also appears as Technical Report #85-22, CS Dept.,
UCSB, Dec. 1985).

Gonzalez, T. and S.-Q. Zheng, "Approximation Algorithms for Partitioning Rectilinear Polygons”,
Technical Report # 85-21, CS Dept., UCSB, Dec. 1985, (to appear in Algorithmica).

Gonzalez, T and S. Q. Zheng, "Improved Bounds for Rectangular and Guillotine Partitions," Journal
of Symbolic Computation, 7, 1989, pp 591 - 610.

Kirkpatrick, D.G., "An Upper Bound for Sorting Integers in Restricted Ranges"”, Proc. 18th Allerton
Conf. on Communication, Control and Computing, Illinois, Oct. 1980.

Lingas, A., "Heuristics For Minimum Edge Length Rectangular Partitions of Rectilinear Figures,” 6th
GI-Conference, Dortmund, 1983, Lecture Notes in Computer Science. 195 (Springer-Verlag).
Lingas, A., R. Y. Pinter, R. L. Rivest, and A. Shamir, "Minimum Edge Length Partitioning of Rectil-
inear Polygons,” Proc. 20th Annual Allerton Conference on Communication, Control, and Comput-
ing, Monticello, linois, Oct. 1982..

Levcopoulos, C., "Minimum Length and Thickest-First Rectangular Partitions of Polygons,”
Proceedings of the 23rd Allerton Conference on Communication, Control and Computing, U. of M-
nois, Oct. 1985.

Levcopoulos, C., "Fast Heuristics for Minimum Length Rectangular Partitions of Polygons,"
Proceedings of the 2nd Computational Geometry Conference, June 1986.

Rivest, R. L., The "PI" (Placement and Interconnect) System, Proc. 19th Design Automation Confer-
ence, June 1982.

