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0. Introduction.

Recently F. Klein [K1] has considered the problem of constructing Voronoi diagrams for a collection
of n sites in an abstract metric space M. With this generality little can be said about the Voronoi regions
and imposing conditions to M or to the metric seems to be reasonable in order to make the problem
more tractable.

Motivated by this observation of Klein we study in this communication the concept of Voronoi
diagram in some "abstract" surfaces endowed with a distance "inter-related” with the local surface
structure, obtaining the construction of these diagrams for a relevant class of such surfaces that include,
among others, all the locally- Euclidean surfaces.

The same problem for specific surfaces embedded in R3 has been solved--to our knowledge--just in
two particular cases: F. Dehne and R. Klein [DeKl] showed that a sweepcircle technique for the plaric
can be generalized to work on the surface of a cone; and K. Q. Brown [Br] gave two different methods to
construct the Voronoi diagram on the surface of a sphere. Finally we can recall that a general description
of the topological and geometrical structure of the boundary of a single Voronoi region has been obtained
by Ehrlich and Im Hof [EI] for the case of simply connected and complete riemannian manifolds without
conjugate points.

1.The definition of a geometry. Geometries coming from a discrete group
of motions of the plane.

Definition 1.1

Let M be a set and let d:MxM—R* be defined such that:

i) d(aa)x0

ii) d(a,b)=d(b,a)

iii) d(a,c)<d(a,b}+d(b.c)
for any a, b and ¢ of M. d is called a distance in M and (M,d) is a metric space.

An important property of distances that could reflect the relation between the metric and the space
itself is the following:

iv) For any two points a and b of M and any pair of positive real numbers o and B, there exists a
collection of points p;, ..., Py in M such that
P1=a, Pp=b
0<d(p;.,p)+ ...+d(Pp.1.Pp)-d(a,b)<at
d(Pi,Pka-

Of course this property is not always satisfyed but if d has this property we will say that the metric
d satisfies the "chain condition". The collection pj, ..., p, Will be called a chain, the pairs p;,p;,; are the
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"links" of the chain. The length of the link p;,p;,; is d(p;,p;+1) and the length of the chain py, ..., p,
is the sum of the lengths of all the links p;,p;+1- \
Definition 1.2

A set M with a metric d verifying i), ii), iii) and iv) is called a geometry (following the terminology
of [NiSh]).

As examples of geometries let us consider several surfaces--some of them lying in R3, while others
are more abstractly defined--which have a well known metric verifying the chain condition:

mmwmwmwmmm more generally, all

the Riemannian manifolds, i. e. differentiable manifolds with a local inner product defined in them which
is compatible with the differentiable structure. In fact, over any Riemannian manifold a metric is defined
as the infimum of the lengths of piecewise differentiable paths between two given points: the local
inner product allows us to compute lengths of such paths.

Now our method to construct Voronoi's on some geometries considers some canonical representation
of the geometry as coming from the action on the Euclidean plane of a discrete group of motions :
Definition 1.3

A group I' of motions of the plane is discrete if for every point A of the plane there exists a constant
¢(A)>0 depending on A, such that for every motion g in I with g(A)#A, it follows that d(A,g(A))2c(A),
where d here is the Euclidean distance on the plane.

Definition 1.4

Let T be a discrete group of motions of the plane. Two points A and A’ of the plane are equivalent
if one of them can be obtained from the other by a motion of I".

Clearly this relation is an equivalence relation and we can consider the set of equivalence classes.
Definition 1.5

If T is a discrete group of motions of the plane, a geometry Gr can be defined such that points of
Gr are equivalence classes by I of points in the plane and the distance d(a,b) between two points a and b
of Gr is defined as the shortest of the Euclidean distances d(A,B) where A runs through the set of
equivalent points a and B runs through the set b. This distance is well defined and verifies i) to iv) of
the definition of a geometry c.f. [NiSh].

In order to specify a point a of the geometry G- we need only to know one point A of a for each
equivalence class; therefore in order to determine the set of all points of the geometry G- we need only
to specify some region of the plane, for example a polygon, satisfying the following properties:

(1) The region contains one point from every set of equivalent points of the plane.
(2) No interior point of the region is equivalent to any other point of the region; that is, equivalent

points of the region can only lie on its boundary.
Definition 1.6

A region satisfying (1) and (2) is called a fundamental domain .

From a fundamental domain for T, the geometry Gt can be considered as a surface obtained from the
reglon by identifying or gluemg together eqmvalent pomts of its boundary mw




Therefore to construct the Voronoi Diagram for a finite collection s of points in such a surface Gr-
will mean for us to find fundamental domain D of I" and a surjective mapping f from to the surface G-
and to give a partition of D such that its image by f is the Voronoi diagram in the surface Gr- for the

collection s.

2. Main results.

Let G- be a geometry coming from the action of a discrete group T" of motions of the plane and let
s=(p1, -..» Pp} be a set of n points in Gr-. Let D be a fundamental domain for I and let S={Py, ..., Py}
be a set of n points in D such that I'(P;)=p;. Consider the set I'S of points in the Euclidean plane which
are equivalent to some of the P;in S.

Note that T'S can consist of an infinite number of points but even in this case, the standard
Euclidean Voronoi diagram for T'S, Vor(I'S), can be obtained by means of any of the algorithms that
work for finite sets of points in the plane because of the following:

Theorem 1

We can explicilty give a fundamental domain D for I such that if we take the minimum number of
copies of D: Dg=D, D1=g1D, ..., Dp=gmD, where the g's are elements of I', such that their union
F=UDj contains D in its interior and if we consider the finite set of points in the plane S*=Sug;Su
...UgmS, a subset of T'S, then Vor(T'S)=I"(V or(S*)ND).

Moreover, knowledge of Vor(S*) suffices to construct the Voronoi diagram in G for s because of
the following:

Theorem 2
The Voronoi diagram in Gr- of s, Vor(Grs) is obtained as follows:
15t take off the edges of Vor(S*) between regions of equivalent points and call V* the resulting partition
2nd make the intersection of V* with D; call it W.
3rd make the quotient by I" of W.

Finally let us give an example of the method outlined above:

Consider a closed band D in the plane an let T" be the discrete group of motions generated by the
traslation of a vector with origin in one edge of the band and ending in the other edge of D and
perpendicular to both . The band D is then a fundamental domain for I" and the image of D by the
elements of T fills up the whole plane. In D, opposite points of the edges are equivalent so we can think
of Gr-as the surface of a cylinder obtained from the band D by identifying opposite points in its edges .

Let s=(p;, -... Py} be a finite collection of points on the cylinder Gr- . The map f from D to Gpr
that takes each point of D to its equivalence class is well defined and we can find S=(Py, .., Py} a
collection of points in the band D such that f(P;)=p;. Points of S in D are then repeated all over the
plane by means of I', generating the set I'S.
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For constructing the Voronoi diagram of I'S in the plane, we have just to compute the Voronoi
diagram for the 3n points of I'S which are in D or in the two bands adjacent to the given band D, that
is Vor(S*), and to intersect it with D and repeating the pattern so obtained in D all over the plane.

For constructing the Voronoi diagram in Gr of s, Vor(Grs), we just take out from Vor(S*) the
edges between regions of equivalent points, intersect with D and past opposite points in its sides.
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