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Extended Abstract

The Voronoi diagram has been proven to be a powerful tool since Shamos introduced it
into computational geometry in the seventies. Variations from the standard Voronoi diagram
have then been introduced and investigated. One of these variations is the Voronoi diagram of
a set of points (called sites) constrained by rectilinear barriers. In this direction, the shortest
distance between two points is measured by their geodesic which is the shortest path between
them that does not cross any barrier. The corresponding Voronoi diagram is called a geodesic
Voronoi diagram which is a planar subdivision in which each region is associated with a site
and the points in the interior of each region has a shorter geodesic to the associated site than to
any other sites in S. Aronov[1] consider the case where the rectilinear barriers form the boun-
dary of a simple polygon enclosing the points. He presented an O((n+m)log2(n+m)) time and
(n+m) space algorithm where n is the number of points and m is the number of barriers. In
this paper, we consider the case where the rectilinear barriers is a set of parallel line segments.
We present an algorithm which takes O((n+m)log(n+m)) time and O(m+n) space. The algo-
rithm is based on the plane-sweep paradigm and is worst-case optimal in both time and space.
Both Aronov’s and our results are generalization of Lee and Preparata’s earlier work on
Euclidean Shortest Paths[2]. In addition, our result also generalizes that of Fortune[3]. Our
method is a combination of plane-sweep and divide-and-conquer. The algorithm consists of
two plane-sweeps. The first (resp. second) sweep advances from left to right (resp. right to left)
along the x-axis to construct a left-to-right (resp. right-to-left) Shortest Path Map. The divide-
and-conquer procedure is a simple top-down non-recursive procedure which completes the geo-
desic Voronoi diagram based on the two Shortest Path Maps.

1. Definitions and Preliminary Results

We shall denote the sites by a set of n points S = { 85 Syseees S } and the barriers by a set
of m parallel line segments L = { [ r Lyseees I }. Without loss of generality, we shall assume
that the barriers are mutually disjoint and are perpendicular to the x-axis and that no site lies in
the interior of a barrier. For each leL, 1Sj<m, we let I. = p,.,p,. where p,,, and p,. are the
upper and lower end-points of /, respectively. For each fes, Tet x{s) 670) re’s'pectivefi) be the
x-coordinate (y-coordinate, respéctively) of s and for each /. e L, let x(l) = x(pZ‘ ). and y(l) =
y(p...). The binary relation < is a partial order defined in SUL such’that B‘. Bj iff x(Bi <

2
*(BF or x(B) = x(B) and y(B) < y(B).

Definition: Let d (p,q) denote the geodesic distance between two points p and q. The geo-
desic Voronoi diagram of a set of sites S in the presence of a set of line segments L, denoted
by Vor(S.L), is a collection of Voronoi cells { V(s) } s such that V(s) = {xld (x,s5.)<d(
x,5.), ¥seS, i# }. We usually refer to the union'of i€ closure of the Voronoi ells as Vord-
noi’diagrdm. A Voronoi vertex is a point on the closure which is equidistant to at least three
sites. A Voronoi edge is a piece of the closure delimited by a pair of Voronoi vertices and
containing no other Voronoi vertex in its interior. [ Remark: As with [2], we assume without
loss of generality that the sites are in general position so that the closure of V(S,L) does not
contain any endpoint of L. ]

1

Let o, o be two points and w(a.), w(oz be two real numbers associated with o.. and &. The
bisector of . and o , denoted by B( 32 is the locus of the points p such that d(p,o.) +
w(o) = d(p,a) + w(dl). Note that when'wla) = w(a) = 0, the above definition of bisector is
the same as tHe usual One. !

Lemma 1% Lerv vV, Ve ¥ be a geodesic between p and q. Then v e {pl1giKm } U {
p.q }, Ost<k, where the pj’s are the end-points of the barriers. 4

Lemma 2% The geodesic between any two points is monotone w.r.t. the x-axis.



We generalize the notion of SPM (Shortest Path Map) of Lee and Preparata[2] as follows:

Definition: Let S° = { o | 1Sj<n+2m } = S U { p.|1<j<2m }. For each point o € S*, a
label s(o.), called the soure of ¢, and a real numbef w(a.), called the weight of a., ! are asso-
ciated wfth o. s(o) is the site th'at is the closest to o with x(s(at)) < x( w(a) is the dis-
tance betweedl o arld s(c.). The Left-to-Right Shorteét Path Map for S* LR-SEM(S*), is a
parunon of the dlosed nggt half-plane, defined by L 1 (the vertical line passing throught s ), into
regions R(a), 1<j<n+2m, such that region R(a.) is associated with the point o € S* and is the
locus of thé points p such that o is visible from p and x(at) < x(p) and dp.o) + we,
d(p,a.) + w(a,) for all o, which afe visible from p and satis x(aL) < x(p). The Kight-to- ft
Shortest Path Map (RL-SPM) is defined similarly.

In the above definition, we have assumed without loss of generality that 5 is the left-most ele-
ment in S*. From Lemmas 1 and 2, it is easily verified that the regxons in LR-SPM(S*) are
separated by the bisectors between points in S*, the barriers from L and sections of the vertical
lines passing throught the sites. Each of the bisectors is a section of a hyperbola or a straight
line segment (a degenerated hyperbola). To be more speciﬁc, (a) for each o which is a site,
say s, if v, ., resp) is a point above (below, resp.) 5, in region R(c) (R’(a resp.) such
that w(a)) + d Q,, d(s v, ) ( w(a + d(o L) d(s., v.), resp. ), then the initial por-
tion of R‘ts) is boun&ed above by blsector B(a ,ss bounded below by B(s al) and bounded on
the left by the section of the vertical line passmg through 5, intercepted by Vi and Vo (Note
v,; Or v, may not exist.) (b) For each o which is an end-pomt of a barrier, say [, if a = (
,; Tesp. ) falls into the region R(ct,) R(), resp) then the initial portion of R
resp) is bounded above by B(a P,; ) ( 1Ps ) resp. ); bounded below by 3 (
B(p ,o), resp. ) and bounded on the left by fhe section of /. intercepted by the two gxsecfors
For’eal point p at which two or more bisectors meet, the following lemma ensures that the
bisectors are continued by exactly one new bisector in the right-hand side of the vertical line
passing throught p.

Lemma 3: Let p be a point at which two or more bisectors meet in a LR-SPM (RL-SPM
respectively). There is exactly one bisector orzgmated from p and extends into the right-hand
(left-hand, respectively) side of the vertical line passing throught p. This new bisector depends
only on the two extreme intersecting bisectors.

Proof: Similar to the proof of Lemma 5 in . O

Lemma 4: Every bisector is montone w.r.t. t%ze x-axis in LR-SMP(S*) (RL-SPM(S*) resp.).
Proof: Similar to the proof of Lemma 4 in @ o

Lemma 5: Let 5, be a site and L be the vertical line passing through 5. Let B(a a) be a
bisector which intersects L_at v_, in the LR-SPM(S*). Then d(s, vﬂg <Sw(a) + d(a vM) iff
the line segment’sy,,~ lies comp?‘étely within the region of 5, in tﬁe -SPM(S“‘ ).

Proof: Omitted due to space. O

2. Constructing the LR-SPM an RL-SPM

Since the construction of the two shortest path maps are similar, we shall consider only
the construction of LR-SPM. Our construction of the LR-SPM generalizes Lee and Preparata’s
algorithm for the single source shortest path with barriers problemm. As with their algorithm,
we uses the plane-sweep method and two data structures Q and 7.

Q is a priority queue in which the elements (points) are arranged according to the total order
<. An element in Q can be (i) a site of S or (ii) a barrier from L or (iii) an event-point which
is the intersection of two bisectors. In case (ii), the coordinates of the two end-points of the
barrier are stored along with the barrier in Q and in case (iii), the two bisectors are stored
along with the event-point. A Virtual event-point is an event-point of which one of the two
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bisectors is deleted. Initially, Q contains the sorted set SUL — {S1}'

T is a balanced binary searched tree which is used to record the status of the sweep line. It
contains the set of bisectors which intersect the sweep line. The bisectors are ordered in T
according to their vertical ordering along the sweep line from bottom to top. For each bisector
B, a variable X(B) is associated with it which defines the x-coordinate of its right end. We say
that the intersection, v, of two bisectors B and B’ is valid if it is to the right of the sweep line
and x(v)<min(X(B),X(B’)). Initially, T is empty.

Algorithm: Construct LR-SPM(S*);

while (Q is not empty) do
pop pout of Q. (* The sweep line is position at p *)
Case (I): p is a barrier lj = DyjiPsj-

1. Determine the regions R(ah) and R(aL) that contain Py and Py respectively by searching T.
Set s(pzj_l) «— s(ah); s(pz,) « s(as);
Set wp,. ) ¢ w(a,) + d(o,, Py s Wp,) = W(e) + d(et,, p,);
2. Compute (the equations of) bisectors B(a, p,. ), B@,. .p,), B(p,.e) and insert them into T.
Set X(B(0, 2, )) « X(B@, .p,)) « X(B(p, 0]} P,
Delete all tfhe bisectors that aré truncated by Ij from T.

3.Let B (resp. B s) be the bisector directly above B(ah, . ) (résp. directly below B(p ,.ak)) and
B_= (ah'pZ'-l)’ 83 = B(pz-.z’p ), B4 = B(pz‘,a . (ﬁote: Bx’Bs may not exist ).
C%)mpute PZL (g |q is the Valid intersection of ,and B, with smallest x-coordinate, 1<I<4}.

for [ := 110 4 do if (x(g) exists and x(g) < min { (g, ), (g, ) })
then insert x, into Q; (*at most two ql’s are 1nserted*)

Case (ID: p is a site s,
1. Set w(s‘,) « 0; s(s‘.) 55
2. Determine the region R(ah) containing a point u above s. so that d(s‘,,u) = w(a ;.) + d(ah,u)
if (R(o h) exist ) then compute the bisector B(ah.s‘.) and insert it into T,
set X( B(ah,sl.) ) €« +oo;
3. Determine the region R(aL) which contains a point v below 5,50 that d(s‘,,v) = w(a) + d(ak,v)
if ( R(a) exist ) then compute the bisector B(ak,s‘_) and insert it into T;
set X( B(ak,s‘.) ) ¢ +oo;

4. Update Q as in step 3 of case (I) using the bisectors computed in Steps 2 and 3.

Case (III): p is an event-point which is the intersection of B(ah,a) and B(aj.ak).

1. case // both B(ah,a) and B(aj,a) are deleted //: discard p;

determine the intersection of the bisector directly above B(ozh,a )
and the bisector directly below B(a.,a.);
if the intersection exists and is valid then insert it into Q; proceed to endwhile;

// only one of B(ah,aj) and B(aj,ag is deleted //: ‘ .
discard p and ‘extend the surviving bisector (i.e. Set its X variable to +oo)
let B be the surviving bisector;

// none of B(ah,a. and B(aj,ak) is deleted //: delete B(ah,a), B(aj.aL) from T;
compute (ah,oz and 1nsert it into T; set X( B(ah,ak) ) & oo;
let B be B(a.,,a);

endcase;

2. Let g, ¢’ be the intersections of B with the bisectors above and below B, respectively. If at
least one of g, ¢’ exists and valid, then insert the one with smaller x-coordinate into Q and



update the X variables of the two corresponding bisector accordingly.
endwhile

The correctness of the above constrcution can be easily verified by applying induction on with
the use of Lemmas 4 and 5 and the structures of LR-SPM(S*).

Lemma 11: Constructing LR-SPM can be done in O((m+n)log(m+n)) time and O(m+n)
space. ,

Proof: It can be shown that the number of non-virtual event-points, the number of virture
event-points and the number of bisectors processed in the course of constructing the LR-
SPM(S*) are all bounded by O(m+n). Since insertion and deletion can be done in O(log)
time for T and in O(loglQ) time and for Q and there are O(m+n) event-points and bisectors, we
immediately have T=O(m+n) and QEO(m+n). Therefore, the insertion and deletion operations
performed on T and Q can each be done in O(log(m+n)) time. For each site s, the time spent
on handling s. is O(log(m+n)) + klog(m+n), where k. is the number of bisectors deleted for s.
For each barrier [, the time spent ‘'on handling . is O(log(m+n)) + k log(m+n), where k. is the
number of bisectdrs deleted for I. For each €vent point p, the tirhe spent on handlifg p is
O({og(m+n)). Since there are O(m+n)) bisectors and event-points and each bisector can be
deleted at most once, the total time required is thus O( nlog(m+n) + Z " k. log(m+n) +
mlog(m+n) + 2,_'1" k. log(m+n) + (m+n)log(m+n) ) = O((m+n)log(m+n)).‘_ e space com-
plexity is easily Verifitd. O -

3. Completing the Geodesic Voronoi Diagram

The LR-SPM(S*) and RL-SPM(S*) form a partial geodesic Voronoi diagram. Based on
them, we can complete the construction of the geodesic Voronoi diagram. To do so, we use a
simple divide-and-conquer strategy: We divide S into two subsets S, and SR of approximately
equal sizes. Then with the help of LR-SPM(S*) and RL-SPM(S*), We determine the dividing
curve which consists of all those edges of Vor(S,.L) which separate the sites in S, from those
sites in S_. We then apply the same procedure to SL ( S, respectively ) to construct those
Voronoi edges which separate the sites in S, ( SR nespectivgly ) into two half. The procedure
is repeated until every set of sites is a sinéleton and the geodesic Voronoi diagram is com-
pleted.

To determine the dividing curve for SL and SR, we proceed as follows:

1. For each region R(a) in LR-SPM(S*), triangulate R(a.) in such a way that every triangle
has o asa vertex. Triangulate the regions in RL-SPM(S*) in a similar way.

2. Determine the bisector on the dividing curve which intersects the line segment joining the
right-most site in SL and the left-most site in S_. Starting from that bisector, trace out the
dividing curve using the triangulated LR-SPM(SQ) and the triangulated RL-SPM(S*).

Unfortunately, the dividing curve may consists of several disjoint pieces. Therefore after two

end-points of the dividing curve are research, i.e one piece of the dividing curve is determined,

the sites on each side of that dividing curve have to be examined to ensure that no side con-
tains a site from S, and a site from S_. If that happens, then the above procedure will be
repeated to trace out another piece of the dividing curve. The process is repeated until .all the
sites from SL are separated from those from S_ . Based on the fact that there are at most

O(m+n) triangles in the triangulated LR-SPM(§*) and RL-SPM(S*), it can be shown that

determining the dividing curve takes O(m+n) time. Since there are at most logn iterations, the

total time required to complete the geodesic Voronoi diagram is thus O((m+n)log(m+n)). The
space complexity can be shown to be O(m+n). The details are omitted due to space limitation.
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