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Abstract

We present a linear time sequential algorithm for finding a straight line that cuts each of two disjoint
convex polygons into two parts of equal area. The solution can be generalized to other measures (for instance,
perimeter) and other proportions of cutting. The problem is generalized in k dimensions, to find a hyperplane
that cuts each of k disjoint convex polytopes into two parts of equal volume. If no (k-2)-dimensional space

exist that intersects all polytopes then the problem can be solved in O(rrklog n) time.
Cutting convex polygons by a straight line

To the best of our knowledge, the problem was not previously studied in the literature. A related problem,
cutting each of two regions by a straight line into two subregions containing the same number of points has
been studied in [E,GM,M] (called also ham-sandwich problem). Instead of counting the number of points in each
region, we here consider continuous measures like area and perimeter.

We will begin by studying the two-dimensional version of the following problem:

Problem 1. Given two disjoint convex polygons in the plane, find a straight line which cuts both polygons
into two pieces of equal areas.

The problem is illustrated on Fig. 1 (where m(P) refers to the area of P). It can be easily shown (using
continuity arguments) that given any two disjoint convex polygons, there exist exactly one straight line that
splits both of them evenly into two subpolygons of equal area.

We say that a given straight line q partitions a convex polygon P if q cuts P into two parts of equal
areas. The straight line partition of P passing by a vertex V of P is called the V- vertex partition of P.

A natural first attempt to solve Problem 1 does not work: find the "centroid” of each polygon and draw a
line through the centroids. Fig. 2 shows that no such centroid exist, since straight lines that partition given
polygon do not necessarily share a common point. However, one can easily show the following property.

Property 1. The intersection of any two straight lines that partition a convex polygon P lies inside P.
In order to solve Problem 1 we first consider the following one.
Problem 2. Given a vertex V of a convex polygon P, construct the V-vertex partition of P.

Let Py, Py, ..., P, be vertices of P listed in counterclockwise order. In linear time one can determine the
areas of all triangles P;P;_4P; i.e. m(P4P; 4P;) (3sisn). Applying a prefix sum technique, one can find
m(P{P,...P;_4P;), and detect a vertex P; of P, with smallest possible index i, for which m(P4P,...P;_{P}) >
m(P)/2, again in linear time (see Fig. 3). We refer to edge P;_;P; and vertices P;_; and P; as being opposite
edge and vertices for vertex P;. Then the vertex partition for P, is found by "interpolation” within the
opposite edge P;_4P; of P4, to get two pieces of equal areas. Here by interpolation we ment determining the
point of intersection of the vertex partition of P; with its opposite edge (the interpolation takes constant
time). It is easy to show that the scan procedure takes O(n) time, where nis the number of vertices of P.

Problem 3. Construct V-vertex partitions for each vertex V of given convex polygon P.
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If we choose the orientation of all vertex partitions from vertices toward interior of P then, on the basis
of Property 1, one can show the following (see Fig. 4).

Property 2. Slopes of vertex partitions of P are ordered by the same circular order as vertices of P.

Using Property 2 one can solve Problem 3 by a linear scan around vertices of P, starting by a vertex Py

(i.e. starting by solving Problem 2). In the scan vertex partitions are found in, say, counterclockwise order of
vertices. Suppose the last vertex partition passed by vertex P, and intersected the opposite edge P;._1P;. Find

m(P, 1P, 2---P;.1P;) from m(P\P,_4...P;_{P;) and m(P /P, 4P;). Starting from P; vertices of P are checked

(in counterclockwise order), one by one, until one is found which adds to more than half of area. Then the
partitioning straight line is found by interpolation (in constant time) within the corresponding opposite edge.

Thus Problem 3 can be solved in O(n) sequential time, which is optimal. This solution can be used to answer
also the following query, given as Problem 4 (note that we do not need to solve Problem 4 to answer to
Problem 1; it is given here since it may be of indenpendent interest).

Problem 4. Given a straight line s and a convex polygon P, find a straight line t parallel to s such that
t partitions P.

Problem 4 can be solved in linear time by constructing all vertex partitions of P (Problem 3) and finding
(by two binary searches) two edges of P such that the slope of s is between the slopes of corresponding
vertex partitions of endpoints of the edges. Then t intersect these two obtained edges and its exact position
can be found by a numeric interpolation (similar interpolation will be described below for solving Problem 1).

Suppose we are given two disjoint convex polygons P and Q(without loss of generality, we assume that P
and Qare separable by a vertical line; in the sequel the relations "above" and "below" are well defined with
respect to two orientations on the vertical line). Our goal is to find a straight line t that partitions both of
them (Problem 1). We divide all vertex partitions into two groups: inner and outer, according to whether or
not corresponding oriented half-lines intersect the vertical separating line (each half-line starts at
corresponding vertex and penetrates the interior of corresponding polygon; see Fig. 4 and Fig. 6). Given a line
t and convex polygon Q let F(t,Q) be the area of the fraction of Q that is cut by t and lies below t. Then the
following property is valid.

Property 3. For each of four sets of inner and outer vertex partitions of P and Q the function F
increases as the slope of partitioning line increases.

The proof is based on Property 1 and is illustrated on Fig. 6.

Now we turn our attention to solving Problem 1. First we find vertex partitions for both polygons (Problem
3). Then we use Property 3 to locate desired straight line t between two neighboring inner and two
neighboring outer vertex partitions of P. Due to this property, a vertex partition of P will be below desired
partition line t (the relation "below" is well defined inside polygon Q if it cuts less than half area out of Q
Applying Property 1, intersections of vertex partitions of P with polygon Q are ordered on the perimeter of
Q which allows linear search for them. In addition, the area m(Pij +1--Pj.1Pj) can be determined in

constant time from the areas m(P,Pz...P,-), m(P,Pz...Pj) and m(P,PI-P,-) (m(Pij +1...P,-_,P,-)= m(P,Pz...P,-) -
m(P,Pz...PI-)- m(P,PjP,-)). On the other hand, if m is the perimeter then m(Pij+1...PI-_1P’-)=m(P1P2...Pi) -
m(P,Pz...Pj) - I(PyPj) + I(P4Py) + I(P,-Pj), where /(AB) denotes the lenght of the straight line segment AB

(see Fig. 5). This enables determining the area of both pieces obtained by cutting Qwith vertex partitions of
P in constant time, ones the intersection points with Q are found. Thus there is unique pair of neighboring
vertex partitions such that the slope of t is between their slopes. Moreover, t will intersect the edge incident
to these vertices. In fact, there are two such pairs of neighboring vertices, corresponding to two edges of P
that t intersect. Analogously one can determine two edges of Q intersected by t. The exact position of t is
then found by interpolation, which in this case is equivalent to solving a polynom of degree 4 (with real
coefficient) and therefore takes constant time to solve it (by a formula or by numeric means).

It is clear that all steps of the former algorithm can be implemented in linear sequential time. Therefore
two disjoint convex polygons can be cut by a straight line each into two pieces of equal area in optimal O(n)
time, where n is total number of vertices of P and Q

For readers that are familiar with parallel models of computation we note that all mentioned problems can
be solved in O(log n) time on a CREW PRAM with n processors (cf. [A] for details on CREW PRAM).
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Plane partitions of convex polyhedra

We now consider the three and higher dimensional version of our main problem. The obtained solutions are
not generalizations of the solution in 2-D case since the properties that enabled optimal solutions in two
dimensional space do not hold in higher dimensions. Thus we describe new solution for the three dimensional
case; the solution can be generalized to higher dimensions in a rather straightforward way. However, the
algorithms are not optimal. In three dimensions the problem can be stated as follows.

Problem 5. Given convex disjoint polyhedra Py, Po, and Pg, find a plane that splits each of them evenly
into two subpolyhedra of equal volume (i.e. find a plane that simultaneously partitions Py, P,, and Pjg).

It can be shown (by using the continuity of functions separating volumes) that there exist exactly one such
plane if the following condition is satisfied: there is no straight line that intersect all three polyhedra.

Otherwise there may be more than one solution. An O(n4 log n) algorithm for determining the existence of
such a line (called also line transversal) is given in [AW] (n is total number of vertices of three polyhedra). If

a line transversal does not exist, our algorithm below finds the solution in O(n2|og n) time, where nis total
number of vertices on all polyhedra; otherwise the algorithm does not garranty to find any solution. The
solution will also be presented by solving several related problems.

Problem 6. Given a straight line p which does not intersect a convex polyhedron P, find a plane ¢
passing by p that partitions P.

Problem 6 can be solved in O(nlog n) time (n being the number of vertices of P) in the following way:

- Sort vertices of P around p in (say) clockwise order.

- Apply binary search (in O(log n) steps). At each step test a plane passing by p and a vertex of P, and find
the volumes of two parts obtained by cuting P with the plane. The test takes O(n) time since triangulation of a
convex polyhedron can be done in linear time. Depending on the result of the test chose the next middle point
following the goal of making volumes equal.

- After the binary search all vertices of P are divided into two sets such that the partitioning plane of P
separates them. To find exact position of the partitioning plane h, an interpolation step should be done. Plane h
has one degree of freedom, since it passes through p (say, the slope according to a chosen direction normal to
p). The edges of P connecting two vertices of P that are separated by h are intersected by h; the intersection
is expressed in the same variable. The two volumes obtained by cutting with h are expressed as qubic
polynomial in the same variable, which can be solved in constant time. This completes solution of Problem 6.

Problem 7. Given a point S in space (such that there is no straight line that passes through S and
intersects both polyhedra P, and P2), find a plane h that passes through S and simultaneously partitions both

polyhedra P, and P,.

Solution of the Problem 7 goes as follows:

-For each vertex A; of P, find the partition plane h; for P, that passes through Sand A;.

-Find the volumes of two pieces of P, obtained by cutting P, with plane h;. On the basis of the obtained
relative sizes of volumes one can decide on which side of desired partitioning plane h the point A; lies.

-The tests done in former step separate points from P, into two sets such that the separation is the same

as done by desired partitioning plane h.
- Repeate above steps with the role of P, and P, interchanged.

- The exact position of his obtained by interpolating between points from P; and P,. The interpolation now

involves the plane with two unknown variables leading to a polynom of degree greater than four in the final
equation. Thus, the solution of the polynom is done by numeric means (Newton method, for example). We
assume constant time for the solution (otherwise the final time complexity should be muiltiplied by the time to
find the roots of a constant degree polynom).

The time needed to solve the Problem 7 is O(nzlog n).
Now the solution of the main problem (Problem 5) can be presented as follows.
- For each point B; from P find the partitioning plane h; for both P, and P, passing by B; ( Problem 7).
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- Find the volumes of two pieces of P3 obtained by cutting Pz with h; and decide on the basis of the test
results about the position of B; with respect to the desired partition plane for P4, Po, and P,

- Perform the same procedure for vertices of two other polyhedra.
-Interpolate the partition plane for P,, P2, and P3 by solving a system of equations that is equivalent to

finding the root of a constant degree polynom.

The time complexity of the described algorithm to solve Problem 5 is O(n3 log n) (multiplied by the time
needed to find a root of a constant degree polynom by numeric methods). It can be implemented on a CREW

PRAM with O(n3) processors to run in O(log n) time.
Extension to higher dimensions

Problem 8. Given k convex polytopes in k-dimensional space such that no (k-2)-dimensional space exist
that intersects all polytopes, find a hyperplane that partitions all polytopes.

It can be shown that such a partition is unique, and can be obtained by generalizing the process described
for 3-dimensional case. The time complexity will be O(nklog n).

Other measures and cutting proportions

Our results can be easily generalized for other measures (not only area) and other proportions of splitting
(not only in two equal halves).

The monotone measure of convex polygons is any measure m such that if a convex polygon P is equal to the
union of two convex polygons Q and R then m(P) < m(Q) + m(R). Examples of such measures are area,
perimeter and the number of vertices. Using the same approach one can solve the following problem: given two
disjoint convex polygons P and Q draw a straight line which partitions P (Q) into two parts P, and P, (Q,

and Q,, respectively) such that m(P,)=a m(P,) and m(Q,)=p m(02), where o and g are two given positive

reals. We presented a linear time sequential algorithm to solve the problem (assuming the measure of any
triangle can be determined in constant time). When implemented in parallel, this leads to an O(log n) time
algorithm on a CREW PRAM with n processors, where nis the number of vertices of P and Q

To be more precise, the time complexities (for area as measure and even splitting) should be multiplied by
T(n), where T(n) is the time needed to solve the following problems for a given measure m: the interpolation
problem in a convex 4-gon (quadrangle); finding the measure of union of two convex polygons that share an
edge; finding the measure of a triangle etc. This time is constant for the area and the perimeter as measures.

Open problems

There a number of open problems which arise from the presented material. We mention some of them. It
may be of interest to solve Problem 1 if the convex polygons may intersect and Problems 1-4 for simple
polygons. What is the set of intersection points of two or more partitioning lines of a convex polygon (area
kernel)? In which case the area kernel consists of one point only, i.e. under what condition all partition lines
intersect at the same point? These problems may be generalized to higher dimensions. Finally, find a more
efficient algorithm to solve three and higher dimensional version of Problems 5-8.
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