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An algorithm is presented for finding the point with integer-valued coordinates that is nearest
to the intersection of two lines, under the constraint that the approximating point lies in a pre-
selected sector formed by these lines. The desired point can be determined in O(log, N) time in
the worst case, where N is the largest integer among the numerators and the denominators of the
rational numbers representing the slopes of the lines.

The problem arises in using finite-precision arithmetic to compute the intersection of polygons
in such a way that the computed intersection is guaranteed to be contained in the true intersection.
In multiple polygon intersections, computed vertices at each stage are used to compute vertices at
the next and subsequent stages. If floating-point computation is used, accumulated round-off error
through all previous stages render the location of the final vertices totally unpredictable.

Figure 1: Approximation of polygon intersection on the integer grid. Points A; and
B, are the approximations of A and B respectively.

The intersection of lines specified by integer-valued parameters, such as a pair of points, may be
computed ezactly as a pair of rational coordinates. This “rational-point™ may then be approximated
by an integer-point (a point on the integer-grid). If the rational-point is a new vertex of an
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Figure 2: Example 1.

intersection polygon, it is necessary to locate the approximating point inside the polygon (Figure
1). Hence we must find the grid point closest to the intersection but inside the appropriate sector
formed by the edges of the intersection polygon.

When the specified sector subtends the wider angle (> 7/2) at the intersection, then the
approximating point may be found readily. In this case the desired point is one of the four vertices
of the grid cell containing the intersection point.

The case of the narrower sector (< 7/2) is in general non-trivial. Since the integer grid maps
to itself when rotated by 7 /2, we will consider, without loss of generality, only the case where the
slope of one of the lines is between 0 and co and the slope of the second line is between —oco and
00.

If the intersecting lines straddle a line with integer-valued slope, then the approximating point
can be obtained in one step. Since our strategy will be to reduce the general problem to this
configuration, we give the explicit solution. The proof is suggested by Figure 2. Straddling the
horizontal axis (one line with positive and the other with negative slope) is a special case of this
condition.

THEOREM 1. Given y; = a1z + by and y2 = az + by such that [a1] < a3 but a; # ay. If nyp is
the smallest integer such that y1(nin) < y2(nin) then n is the smallest integer such that the interval
[1(n), y2(n)] contains an integer, where

n= " b} b, .
Nin + min { [foT= 1 [a’l_[m ]} , otherwise.

The values of nin, b}, and b; are
nin = [(b1 = b2)/(a2 — a1)], b} = b1 + ninar — |(b1 + nina1)], b3 = bz + ninaz - (b1 + nina1)]-
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ExaMPLE 1: Given y, = (5/4)z+7/8 and y, = (5/2)z + 1/4, from Theorem 1, n;,, = 1, b} = 1/8,
% =3/4. So n = 2 and m = 4 (Figure 2). '

Now we consider the only case of interest that remains, when the slopes of the lines are strictly
between two consecutive integers, i.e., when 0 < |a1] < @1 < a3 < [a4].

ExaMPLE 2: One such configuration is y; = (47/14)z + 1/4 and y2 = (41/12)z + 1/24. We wish
to find the smallest integer n for which there exists an integer m such that

(47/14)n + 1/4 < m < (41/12)n + 1/24. (1)

We will reduce such problems to the configuration in Theorem 1 by iterating two steps.

1. If slopes a; and a; are both greater than 1, subtract |a;] - n from the inequality. The
resulting slopes will be in [0,1]. This step does not alter the desired value of n, but the
new value of m will be reduced by |a,] - n.

2. Invert the inequality, which interchanges the roles of m and n. This also inverts the slopes,
which will now be greater than 1. If the condition of Theorem 1 is satisfied, then solve
for current m and n and stop, otherwise go to step 1.

We illustrate the above steps for Example 2:
First iteration:
Subtract [47/14] -n = 3 - n from (1)

(5/14)n+1/4 < m' < (5/12)n+1/24, (where m' = m — 3n)
Invert the inequality
(12/5)ym’ - (1/24)-(12/5) < n < (14/5)m’ - (1/4) - (14/5) (2)

Second iteration:
Subtract [12/5] - m' = 2. m/ from (2)

(2/5)m’ — (1/24) - (12/5) < ' < (4/5)m' —(1/4)-(14/5), (where n’ =n —2m’)

-

Inverting the inequality results in

(5/4)n’ + (1/4) - (14/5) - (5/4) < m' < (5/2)n’ +(1/24)-(12/5)-(5/2)
or (5/4)n' +7/8 <m' < (5/2)n' +1/4

Theorem 1 is applicable here and in Example 1 we have already found that m’ = 4 and n’ = 2. By
retracing our steps, we find the solution to the original problem to be m = 34 and n = 10.
The solution can be expressed in terms of continued-fraction expansions. Note that

47/14 = 3+ 1/(2+ 1/(5/4)), and 41/12 = 3+ 1/(2 + 1/(5/2)),

where the final quotients correspond to the slopes in the reduced problem. This suggests the
following theorem.
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DEFINITION: (Z1,Z3,...,Zk,P'/q’) represents the rational number p/q = z; +1/(z2+1/(...(zx +
q'/pr')...)), where z;, p, ¢, P/, and ¢’ are non-negative integers.

THEOREM 2. Let ay = p1/q1 = (z1,...,2Zk, 71 /q}) and a2 = p2/q; = (21, ...,2Zk,p4/q}) such that

0<pi/qs < [pi/q1] < o/q, but py/qi # p3/q;. If m' and n’, given by Theorem 1, are the smallest
integers satisfying

(r/a)n + (-1 (@/q)br < m' < (Bh/gp)n’ + (~1)¥(a2/})b2,

then m and n given by m/n = (z,,...,2x,m'/n’) are the smallest integers such that

(Pi/gi)n+b; < m < (pj/gi)n+b;, wherep;/q < p;/g;.

Note: m and n are, respectively, the numerator and the denominator of (zll, «eeyZk,m'[n') when
it is evaluated without cancellation of any common factor.

From the definition, we have 47/14 = (3,2,5/4) and 41/_12.= (3,2,5/2). From Theorem 1,
m' = 4 and n’ = 2 satisfy

(5/4)n +(=1)*(1/4) - (14/4) < m' < (5/2)n' +(-1)*(1/24) - (12/2).

Since (3,2,4/2) = 34/10, according Theorem 2 m = 34 and n = 10 are the smallest integers that
satisfy
(47/14)n + 1/4 < m < (41/12)n + 1/24.

To evaluate the time complexity of the algorithm, we assume that the numerators and the
denominators of the rationals in the slopes and the intercepts are within the range of integer
representation N of the machine. Integer division and modulo arithmetic can therefore be performed
in constant time. Then the time required to find the approximating point is proportional to the
number of steps in the continued-fraction expansion of the two slopes (up to the point where the
two expansions differ for the first time) - all other parts of the algorithm can be executed in constant
time.

The continued-fraction expansion of a rational p/q has at most 2 + 2log, min{p, ¢} steps, so it
is bounded by 2 + 2log, N. The worst case occurs when the two expansions do not differ until one
of them is fully expanded. Thus the worst-case time complexity of the algorithm is bounded by
O(logzN).

In general, however, the algorithm executes much faster because in the majority of the cases
the slopes are separated by an integer and no continued-fraction expansion is required. For slopes
uniformly distributed over the range achievable with numerator and denominator bounded between
0 and N, the average complexity is O(1). We conclude that the above method provides an efficient
solution for applications that require constrained finite-precision approximation.

The formal proofs have been developed and the algorithm has been coded and tested.



