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Abstract

Hanan has shown that a rectilinear Steiner minimal tree can always be constructed using only edges
on the grid formed by horizontal and vertical lines through each of the sites to be connected. This grid,
with O(n?) edges and vertices, is used in several optimal algorithms for rectilinear Steiner trees. We
show that there is a reduced grid with expected O(n) edges and vertices. This is accomplished using a
theoretical method developed by Hwang for decomposing rectilinear Steiner minimal trees.

Further, it is shown that a vertical or horizontal line crosses the reduced grid at an expected O(+/n)
points. This fact can be exploited in the optimal rectilinear Steiner tree algorithm of Thompson, Deneen
and Shute [6] to reduce the expected run time from n®(V™ to 20(V™),

1 Introduction

Many practical problems require interconnecting a set of sites while holding the total length of the intercon-
nections to a minimum. Examples arise in designing telephone and power distribution networks and laying
out the interconnections between various components of an integrated circuit. If the problem allows junctions
at points other than the original sites, such points are called Steiner points. The general problem of finding
a minimal length network that interconnects all of the sites is called the Steiner problem, and the minimal
length network is called a minimal Steiner tree for the set of sites. For practical reasons, the interconnections
in an integrated circuit layout are usually constrained to consist of horizontal and vertical line segments in a
plane. With this constraint the problem is known as the rectilinear Steiner problem and the minimal length
network is called a rectilinear Steiner minimal tree for the set of sites. Garey and Johnson [3] have shown
that the rectilinear Steiner problem is NP-complete.

Hanan [4] has shown that a rectilinear Steiner minimal tree can always be constructed using only edges
on the grid formed by horizontal and vertical lines through each of the sites. This grid, with O(n?) edges
and vertices, is used in Yang and Wing’s [8] algorithm for rectilinear Steiner minimal trees. We show that
there is a reduced grid with expected O(n) edges and vertices that contains a rectilinear Steiner minimal
tre?.) With the reduced grid, the run time of the of Yang and Wing’s algorithm is reduced from 20("%) to
20(n),

In Section 2 we present the notation and fundamental terminology that is be used in the rest of the
paper. In Section 3 we describe the decomposition used by Hwang in terms more suitable for this work. In
Section 4, we show that there is a reduced grid for a set of n sites with expected O(n) edges and vertices.
Finally, in Section 5, we describe an algorithm for computing this reduced grid in O(nlogn) time.
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2 Notation and terminology

Let P be a set of n points in the plane. We refer to the points of P as sites. A tree on P is a set of points
T D P in the plane such that there is a unique path in 7" between any pair of points of T. We restrict our
attention to rectilinear trees, which are constructed entirely with vertical and horizontal line segments. A
vertez of T is a point p € T that has degree three or more. A Steiner point of T is a vertex of T that is
not a site. A line of T is a straight line segment contained in 7. An edge is a line that contains no vertices
except possibly at its endpoints. A corner is formed by two edges that intersect at right angles at a common
endpoint that is not a vertex.

A rectilinear Steiner minimal tree may be modified by two kinds of operations that leave its length
invariant. If T has an edge e that terminates on two parallel lines !; and Iz, then we can shift e along !; and
I, to a position parallel to e. If two edges e; and e; meet to form a corner we can flip the corner, replacing
e; and ey by parallel edges that, together with e; and ey, form a rectangle. If a tree 77 can be obtained from
T by a sequence of shifting and flipping operations we say that T" is equivalent to T

3 Decomposing a rectilinear Steiner minimal tree

Hwang [5] has described a decomposition of rectilinear Steiner minimal trees that is a crucial theoretical
foundation for this paper. For a rectilinear Steiner minimal tree T on a set of sites P, a component of T is
a maximal subset C C T such that there are no sites in the interior of C. We can obtain the components of
T as the closures of the connected components of the forest T\ P. See Figure 1, where the two components
of a rectilinear Steiner minimal tree are emphasized with heavy lines.

As shown in Figure 2, it may happen that a shift operation on a component C results in splitting C
in two. If this is possible, we say that C is reducible. Otherwise we say that C is irreducible. If each
component of a tree is irreducible then we say the tree is canonical. If a component is reducible then each
of the subcomponents contains fewer sites than the original. Thus splitting of components terminates after
finitely many steps, proving the following:

Lemma 3.1 Every rectilinear Steiner minimal tree is equivalent to a canonical tree.

The characterization of irreducible rectilinear Steiner minimal trees is a central part of Hwang’s work [5].
There it is shown that each such tree is equivalent to one in which all but possibly one of the Steiner points
lie on a straight line that contains one of the sites, with sites connected on alternating sides to the Steiner
points. The one exceptional Steiner point joins to one end of the line of Steiner points through a corner.

We refer to irreducible rectilinear Steiner minimal trees as boughs. An example of a bough whose Steiner
points lie on a straight line is shown in Figure 3. Figure 4 shows a bough with an exceptional Steiner point
near the left end. If no two sites lie on the same vertical or horizontal line then all boughs differ from those
in Figure 3 or Figure 4 only in orientation or number of Steiner points. With degenerac1es we may also have
bough with four sites and a single Steiner point of degree four, as in Figure 5.

The gaps in Figures 3-5 show how to partition a bough into lines, each of which has a site as one endpoint.
These lines fall into two classes. Those with interior Steiner points are called limbs and those with no interior
Steiner points are called twigs.

In view of Hwang’s work and the above terminology, we may restate Lemma 3.1 as follows:

Lemma 3.2 Every rectilinear Steiner minimal tree is equivalent to a canonical tree, which can be decomposed
into limbs and twigs, each terminating at a site. In a canonical tree the line attached at each Steiner point
on a limb is a twig. The twigs on a limb alternate sides.

4 Probabilistic analysis

In this section we show that limbs and twigs of a canonical Steiner tree are probably not very long. For our
probabilistic arguments it is reasonable to disregard the possibility of degeneracies. Thus we assume that no
two sites lie on the same horizontal or vertical line.
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Now consider Figure 6, where the heavy line L is a potential limb or twig in a canonical Steiner tree 7.
We assume that the site on L is either above ys or below yo. In Figure 6, regions B, C, and D are 45° right
triangles and B extends to a larger 45° right triangle with a vertex on L and hypotenuse on the line y = y3.
The following lemma describes a situation that obstructs L from being a part of T'.

Lemma 4.1 In Figure 6, if there are no sites in the shaded region A but there is at least one site in each of
regions B, C, and D, then the line segment on L from yo to y3 cannot be entirely contained in any canonical
Steiner tree T.

Proof: Omitted.

Our method for producing a reduced grid is to form a grid from horizontal and vertical lines terminating
at each site, as in Hanan’s grid. But instead of extending these lines to the boundaries of a rectangle that
encloses all of the sites, we determine a bound on the length of each line by searching for configurations of
sites that satisfy the hypotheses of Lemma 4.1.

As in [1], our probabilistic analysis is done in the context of a Poisson process with intensity 1 on a
V/n x \/n square. We fix dimensions in Figure 6 by setting y3 — yo = 1 and choosing y; and y. to divide
the line segment on L between yp and ys in thirds. Applying Poisson probability formulas to the various
regions in Figure 6, we find there is a constant ¢ > 0 such that the probability that the segment of L between
Yo and y3 is not contained in any canonical Steiner tree is at least c¢. Note that ¢ is an absolute constant,
independent of n. We can put |l| copies of Figure 6 along a line L of length [, without overlapping any of
the regions. Thus the probability that L is contained in some canonical Steiner tree is at most (1 — ¢)l!.
Our main theorem can be deduced from this fact.

Theorem 4.2 For a set of n siles in a square there is a reduced grid, consisting only of lines through the
sites, which contains any canonical rectilinear Steiner minimal tree for the set of sites. For points that are
generated by a Poisson process in a square, the expected number of vertices in the reduced grid is O(n) and
the ezpected number of intersections of a horizontal or vertical line with the grid is O(\/n).

Proof: Omitted.

5 An algorithm for finding a reduced grid

The regions involved in the hypotheses of Theorem 4.1 are or can be decomposed into a few rectangular or
triangular regions. Thus, using range search methods described in [2, 7], we can make a single test for the
hypotheses in time O(logn). From each site we can proceed in each of the four coordinate directions, testing
the hypotheses, and advancing if the hypotheses are not satisfied. The results in the preceding section show
that the hypotheses will be satisfied in an expected constant number of tries. Then we can terminate the
line in that direction from that site. With n sites, the expected run time for the algorithm is then O(nlogn).
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Figure 1: Components of a rectilinear Steiner minimal tree.
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Figure 2: Reduction of a component.
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Figure 3: A bough and some of its parts.
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Figure 4: A bough with an exceptional Steiner point.
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Figure 5: A degenerate bough.

Figure 6: Regions involved in an obstruction to a Steiner line.



