Minimum Polygon Covers of Parallel Line Segments

Henk Meijer and David Rappaport
Department of Computing and Information Science
Queen's University
Kingston, Ontario K7L 3N6

(Extended Abstract*)

Abstract: In this note we show that, given a set S of n parallel line segments, a perimeter minimizing polygon that intersects every segment of S can be found in $\Theta(n \log n)$ time.

Introduction.

The problem of intersecting a collection of objects with a common line has received considerable attention in the area of discrete and computational geometry. Such a line is known as a line transversal in the mathematics literature, or a line stabber in the computer science. One can generalize the notion of stabbing with a line to stabbing with a convex polygon. This problem can be attributed to [Tamir]. In [Goodrich and Snoeyink] an $O(n \log n)$ algorithm is given to determine whether a set of parallel lines can be stabbed by the boundary of a convex polygon.

We look at a related problem. Rather than restrict ourselves to stabbing objects with the boundary of a polygon we will allow the interior of the polygon to stab as well. In essence we want to find a polygon such that at least one point of every segment is covered. In this note we present an algorithm to compute the polygon of smallest perimeter that covers a set of parallel line segments with its interior and boundary.

Computing minimum polygon covers.

Let S be a set of n parallel line segments. Without loss of generality we can assume these line segments to be vertical. We define a polygon cover of S as a simple polygon that intersects every segment of S with its interior or with its boundary. We represent a polygon by its boundary. Therefore, we use (p_0, p_1, \ldots, p_k), a list of vertices traversed clockwise on the boundary of P, to represent P. In order to avoid circularity of the list we assume that $p_0 = p_k$.

Let any contiguous sublist of a polygon representation be denoted as a polygonal chain. Let $conv(X)$ denote the convex hull of a set of points X, that is, the smallest convex region containing X, and let $CH(X)$ denote a list of vertices that represent the boundary of $conv(X)$. Our algorithms will be concerned with summing lengths of edges on the boundary of polygon covers. The sum of the lengths of the edges of a polygonal chain X is denoted by $len(X)$.

Given a polygon P, $len(P)$, should be understood as the sum of the boundary edges of P. A minimum polygon cover of S is a polygon cover of S, P, such that $len(P)$ is minimized over all polygon covers of S.

We state all lemmas and theorems without proof. Proofs may be found in the complete paper.

Lemma 1: Every minimum polygon cover of a set of line segments is convex.

* This research was supported by the Natural Sciences and Engineering Research Council of Canada under grants A-0282 and A-9204.

* A complete version of this result can be found in Queen's University Technical Report CISC 90-279.
Let B and T denote the set of all bottom and top endpoints respectively of the segments in S. Let b_L and b_R respectively denote the leftmost and rightmost points in B, breaking ties by choosing the point with the largest y-coordinate. Let $UpH(B)$ denote the upper half hull of $CH(B)$ represented by the sublist of $CH(B)$ beginning at b_L and ending at b_R. Similarly let t_L and t_R denote the leftmost and rightmost points in T, breaking ties by choosing the point with smallest y-coordinate. Then, $LoH(T)$ is the lower half hull of $CH(T)$, represented by a sublist of $CH(T)$ beginning and ending at t_L and t_R respectively.

We denote the subset of S that intersects the vertices of a polygonal chain X as $S(X)$. Similarly we use $s(x)$ to denote the line segment in S (if one exists) that intersects a point x.

Lemma 2: Every polygon cover of $S'=S(UpH(B)) \cup S(LoH(T))$ is also a polygon cover of S.

Lemma 3: Every minimum polygon stabbing cover passes through the segments $s(t_L)$, $s(b_L)$, $s(t_R)$ and $s(b_R)$.

We define some operations on lists. Given a list A, $rev(A)$ denotes the list in reverse order. If A and B are two lists then $A+B$ denotes the concatenation of list B to list A. If a list $C = A + B$ then $C-B$ denotes the list A. Given a list L, we use $\{L\}$ to denote a set consisting of the elements in L.

Lemma 4: If $s(t_L) \neq s(b_L)$ and $s(t_R) \neq s(t_L)$ then the polygon represented by concatenating the lists $UpH(B) + rev(LoH(T))$ is a minimum polygon cover of S.

![Figure 1](image)

If $s(t_L) = s(b_L)$ then we abbreviate the segment $[b_L, t_L]$ by s_L. Similarly, if $s(t_R) = s(b_R)$ then we abbreviate $[b_R, t_R]$ by s_R. If $[b_R, t_R] \in S$ then it is not necessary to cover both b_R and t_R. Rather, only a single point on the segment s_R needs to be covered. A similar situation occurs on the left with the segment s_L. See figure 1. An algorithm MINPOLYSTAB conveys this strategy in more detail.

Algorithm MINPOLYSTAB

Input: A set of vertical line segments S.
Output: P, a minimum polygon cover.
Step 1. Compute $UpH(B)$ and $LoH(T)$ as discussed above.
Step 2. Consider all the points in B with the largest y-coordinate. Let f and g be the leftmost and rightmost of these points. Similarly of all points in T with the smallest y-coordinate let ϕ and γ be the leftmost and rightmost.

- $RUp \leftarrow$ subchain of $UpH(B)$ beginning at g and ending at b_R;
- $RLo \leftarrow$ subchain of $LoH(T)$ beginning at γ and ending at t_R;
LUp ← subchain of UpH(B) beginning at f and ending at bL;
LLo ← subchain of LoH(T) beginning at φ and ending at tL;

Step 3. if \(s(t_R) \neq s(b_R) \) then
\[\text{RIGHTCOVER} \leftarrow \text{RUp} + \text{rev(RLo)} \]
else
Find chains U and V both terminating at the same point r on \(s_R \), that covers
\(\{\text{RUp} - b_R\} \cup \{\text{RLo} - t_R\} \cup \{s_R\} \) and minimizing \(\text{len}(U) + \text{len}(V) \);
\[\text{RIGHTCOVER} \leftarrow U + \text{rev}(V) \];

step 4. if \(s(t_L) \neq s(b_L) \) then
\[\text{LEFTCOVER} \leftarrow \text{LUp} + \text{rev(LLo)} \]
else
Find chains U and V both terminating at the same point r on \(s_L \), that covers
\(\{\text{LUp} - b_L\} \cup \{\text{LLo} - t_L\} \cup \{s_L\} \) and minimizing \(\text{len}(U) + \text{len}(V) \);
\[\text{LEFTCOVER} \leftarrow V + \text{rev}(U) \];

step 5. \(P \leftarrow \text{LEFTCOVER} + \text{RIGHTCOVER} \).

The correctness of algorithm MINPOLYSTAB follows as a consequence of the following lemma.

Lemma 5. There exists a minimum polygon cover that passes through every point in B with maximum \(y \)-coordinate and through every point in T with minimum \(y \)-coordinate.

Addressing the problem of computing the polygonal chains U and V as described above we must first consider the following subproblem.

Given two points p and q and a vertical line segment defined by its top and bottom endpoints [t, b] we determine the point r such that r is a point in [t, b], and the sum of the Euclidean distances \(d(p, r) + d(r, q) \) is minimized. We will make use of a function,
\[\eta(p, q, [t, b]) \]
to return the value of such a point r given p, q, and [t, b]. This is a variant of Heron's problem, see [Courant and Robbins] for a simple geometric solution.

We present an algorithm to compute the chains U and V as described in algorithm MINPOLYSTAB. We compute these chains on the right side. A symmetric approach is used to compute a solution for the left side. The points g and γ and the chains RUp, RLo, U and V are defined as in algorithm MINPOLYSTAB.

Algorithm RIGHT

Input: Polygonal chains RUp, RLo and the segment \(s_R \).
Output: Polygonal chains U and V.

Step 1. Set \(p \leftarrow g \); \(q \leftarrow \gamma \); \(r \leftarrow \eta(p, q, s_R) \).
\[u \leftarrow \text{next}(p, \text{RUp}); v \leftarrow \text{next}(q, \text{RLo}); U \leftarrow p; V \leftarrow q; \]
\{next(x, L) is a function that returns the successor of x in the list L.\}

Step 2. while u above \([p, r]\) or v below \([q, r]\) do
if u is above \([p, r]\) then
\[U \leftarrow U + u; \]
\[p \leftarrow u; \]
\[r \leftarrow \eta(p, q, s_R); \]
\[u \leftarrow \text{next}(u, \text{RUp}) \]

[...]

else if v below [q, r] then
 V ← V + v;
 q ← v;
 r ← \eta(p,q,s_R);
 v ← next(v, RLo);
endwhile.

Lemma 6: At every iteration of the while loop in algorithm RIGHT the polygon formed by U + r + \text{rev}(V) is a minimum polygon cover of \{U\} \cup \{V\} \cup (S_R).

We conclude with the main result of this paper.

Theorem: A minimum polygon cover for a set of n parallel segments can be constructed in O(n \log n) time and this algorithm is optimal.

Discussion.

We have demonstrated an algorithm to compute a minimum polygon cover for a set of parallel line segments. Recently we have been able to extend our results to find the minimum polygon cover of a set of isothetic line segments in O(n \log n) time [Lyons, Meijer and Rappaport]. We are also aware of a result due to [Souvaine] where the minimum polygon cover of a set of line segments that are the edges of a convex polygon can be found in O(n) time. However, the challenging problem of computing the minimum polygon cover of arbitrarily oriented line segments remains open.

References.