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1 Introduction

Given a polygon @ and a point p in the plane, we wish
to find both the longest chord and the shortest chord of
@ that passes through or extends through the point p.
Throughout this paper, it is assumed that @ is an n-
sided simple polygon, while the point p may be interior
to, on the boundary of, or exterior to Q.

1.1 Motivation

The computation of polygonal chords with respect to a
point is related to the computation of diameters and di-
agonals. The diameter of a point set S [11] is the longest
line segment connecting two points in S. It can be com-
puted in O(nlogn) time. A proper chord of a polygon
Q is a line segment that lies entirely in Q. The diagonal
of a polygon is a longest proper chord that connects two
vertices. An O(nlog® n) time and O(n) space algorithm
for computing diagonals is discussed in [1]. The problem
of finding the longest proper chord of a polygon can be
solved in O(n!-%8) time [3].

The diameter, diagonal, and convex hull of a point
S are examples of so-called view-independent properties
of S. On the other hand, the visibility polygon of Q@
with respect to a view-point p is an example of so-called
view-dependent property of the polygon @ with respect
to the point p. The longest chord through p of @ can be
considered to be a view-dependent version of a diagonal.

In this paper we also introduce the concept of the far-
thest visibility polygon, which is a view-dependent prop-
erty of a polygon. The farthest visibility polygon (with
respect to the view-point p) can be considered as a dual
of the (nearest) visibility polygon [6][9].

1.2 Definitions and Overview

When p is an internal point or a boundary point of Q, we
define a polygonal chord (or simply chord) through p to

be a line segment that goes between two boundary points
of @ and contains the point p. But if p is external to Q, it
is not sensible for a polygonal chord to pass through the
point p. Therefore, we enlarge the notion of polygonal
chords through p by admitting all the chords that lie on
a line that passes through the possibly external point p.
Such chords are said to extend through p.

A chord of the polygon @ connects any two points
on the boundary of Q. A proper chord of Q connects
two points that are on the boundary of @, such that the
chord segment has no point external to Q. There may
be multiple proper chords contained in a chord.

To begin, suppose that p is an interior point of an n-
sided polygon Q; In section 2, we prove that if Q is con-
vex, then both a longest chord through p and a shortest
chord through p can be found in O(n) time. This involves
showing that the function that describes the length of a
chord through a point p and between a pair of edges of Q
is unimodal, and has a unique global minimum. There-
fore, a longest chord of @ passing through the point p
can be found by examining all the n chords that go from
a vertex of Q and pass through the point p. Similarly,
a shortest chord that passes through the point p can be
found by examining up to n pairs of edge segments of Q.

We can treat non-convex polygons by extending the
results in section 2. First of all, Theorem 1 also holds
when Q is a star-shaped polygon, and p is in its visibility
kernel, or simply kernel, which is the set of points in Q
that can see every boundary point of Q. And even if Q
is not star-shaped or p is not in the kernel of Q, we still
can find a longest chord and a shortest chord that pass
through the interior point p in O(n) time. This involves
constructing the (nearest) visibility polygon of Q.

What if p is not interior to Q? If p is on the boundary
of Q, we can prove that the same methods apply for
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Figure 1: three polygonal chords

finding both longest or shortest proper chords passing
through p.
/

If p is external to @, then all the associated shortest
chords that extend through p must have length 0. This
is because we can always find a chord extending through
the external point p that contains a one-point proper
chord, which has to be a vertex, of the polygon Q.

We can find a longest chord that extends through ei-
ther an external or internal point p in O(n) time, by first
computing the so-called farthest visibility polygon of Q
with respect to the point p. This is discussed in section 3.
Note that we may need O(nlogn) time to generate all
the pairs of edges that admit one or more proper chords
that extend through an external point p.

In section 4, the computation of shortest chords
through an internal point p is discussed. In section 5, a
generalization of polygonal chords, called broken chords
is introduced. A broken chord through p consists of a
pair of line segments with a common end-point p.

2 Longest chords that pasS
through a non-external point

2.1 The internal point theorem

. . .. . b
In Figure 1, we are given two semi-infinite rays oa and
-

ob from a point o, and an internal point p lying between
these two rays, where angle Z(aob) = a € (0, 7).

Let u;, uz, and u3 be any three distinct points on oa,
with us between u; and us. Let v;, v2, and v3 be three

distinct points on ob, such that the threes line that go
from the point u; to the point p intersect ob at v;, for
i =1,2,3. Let [uv| denote the length of the line segment
uv. We wish to prove the following.
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Theorem 1: |373| < max (|7171], [4373]).

Proof sketch: The key to this proof is to express the
chord-length function y(8) = |g7| in terms of an angu-
lar parameter 6, and to show that the function y(6) is
unimodal by showing its second derivatives are always
positive.

2.2 Computing longest chords through a
non-external point

Let us first consider computing a longest chord of a con-
vex polygon @ passing through an internal or boundary
point p. Such a chord is always proper. By Theorem 1,
a longest chord of a convex polygon @ through an in-
ternal point p must also go through a vertex of Q. For
a proper chord through p to go through a vertex of Q,
it is sufficient that Q is star-shaped and that p is in its
kernel. It is possible to find the lengths of all the proper
chords passing through p and a vertex of Q in O(n) time
by using a technique similar to that used in finding all
O(n) antipodal pairs [11] of a convex polygon.

The visibility region of a polygon @ with respect to an
internal point p is the portion of Q that is visible from
the point p. This corresponds to a polygon, denoted
by NV(Q,p), called the (nearest) wvisibility polygon of
Q with respect to an internal point p. It can be built
in O(n) time [9]. The visibility polygon NV(Q,p) is a
bounded star-shaped polygon with at most n vertices
and the point p lies in its kernel.

Theorem 1 is also true even if p is a boundary point
of Q. Therefore, a longest proper chord of a polygon @
can be found in O(n) time for p internal to or on the
boundary of Q.

3 Longest chords that extend
through an external point
Now, let us consider longest chords of a polygon Q that

are constrained to lie on a line passing through an ex-
ternal point p. Theorem 1 no longer holds if the point p

‘is ezternal to Q. This is because the chord-length func-

tion y(6) of the proper chords between any two infinite
rays, constrained to pass through a point p which is out-
side the wedge formed by the rays, is either bimodal or
monotonically increasing. Theorem 2 below states that
the chord-length function either has exactly one local
maximum and one local minimum, or is a monotonically
increasing function for some parameter 6.
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Figure 2: chord from an external point

3.1 The external point theorem

. . . . . b
In Figure 2, we are given two semi-infinite rays oa and

ob extending from a point o, and suppose we have an
ezternal point p lying outside the cone formed by these
two rays and their inverse rays. '

Consider the chord g7 from a point g on oc to a point

r on ob that extends through the external point p. Let
6 = L(opr), and let y(6) = |gF|. Thus, y(6) is the length
of the chord g7. Note that 8§ € [0, — 8 — ], where
o = /(aob), and B = £(bop). The two rays oa and ;i are
parallel, and the angle Z(opt) = 7 — f — a. Also note
that 0 < a < m,and 0 < S < B+ a < 7. When ¢ and
r are chosen so that § = 0, then the length of the chord

T between the two rays oa and ob such that g7 extends
through the point p is globally minimal, with the chord-
length y(0) = 0. When # = 7— 8 —«, q and r are chosen
so that the chord-length y(f) becomes infinite. We wish
to show the following.

Theorem 2: y(f) is either a monotonically increasing
function or a bimodal function of the parameter 6, in the
interval 0 <0< 7 —fB—a.

Proof sketch: Although this theorem is similar to
Theorem 1, the proof is somewhat more complicated.
We can show that the chord-length function y(6) is of
the form sin(8)/(sin(f + B + a) *sin(f + a)). We may
then observe that the function y is either unimodal or
bimodal, by means of a series of reductions to simpler
forms.

3.2 Longest proper chords that extend
through an external point

By Theorem 2, a longest proper chord of the polygon
Q which extends through an ezternal point p need not
pass through a vertex of Q. By resorting to standard

numerical technique, we still can find the extreme values
of the function y(6).

If the polygon @ is convex, then there are at most
n pairs of edge-fragments that need to be considered,
and we can find the longest proper chord that extends
through the point p in O(n) time. Note that every vertex
¢ in @) can admit at most two proper chords that extend
through the internal or external point p and run between
an edge of @ and the vertex i.

Unfortunately, we know of no algorithm to generate all
the O(n) pairs of edges in linear time. By arranging the
edges of the polygon @ into a so-called angular segment
tree with respect to the center p, we can generate all the
O(n) pairs of edges that admit at least one proper chord
that extends through p in O(nlogn) time. An angular
segment tree with center p of a polygon @ stores all the
pairs of end-points of edge segments of @, such that the
end-points are angularly sorted with respect to p. Such
a segment tree can be constructed in O(nlogn) time.

Note that if the point p is non-external to @, we still
can compute its proper chords that extend through the
point p in the same manner. This is because the so-called
tnvisible portion of the polygon @ as seen from p, defined
to be the point set @ — NV (Q, p), treats the point p as
an external point. Thus we have the following theorem.

Theorem 3: A longest proper chord of a n-sided sim-
ple polygon @ that extends through any point p can be
found in O(n logn) time. A longest proper chord that ac-
tually passes through a given internal point or boundary
point of @ can be found in O(n) time.

3.3 Farthest visibility polygons

The farthest visibility polygon of a polygon @ with re-
spect to a point p, denoted by FV(Q,p), is defined as
follows:

1. Construct a circle C centered at p which surrounds

Q.

2. Imagine light shining from the circumference of C
toward the point p. The edge fragments of @ which
are illuminated can be connected end-to-end (ac-
cording to the polar angles of the end-points around .
the center p) to form the farthest visibility polygon
FV(Q, p) with respect to the point p.

FV(Q,p) is formed by edge-fragments of Q that are
not obscured by any other edge of @, as the light radiates
from C toward the point p.



Figure 3: a farthest visibility polygon

Let us first assume that p is a point inside conv(Q),
the convex hull of Q. In this case, FV(Q,p) will be a
bounded star-shaped polygon, with at most n edges and
p being a point in its kernel. For example, in Figure 3,
the polygon @ has bold solid edges, and the polygon
FV(Q,p) is the shaded area plus the entire area of Q.

The polygon FV(Q,p) can be found in O(n) time.
The algorithm is similar to the algorithm for the con-
struction of the (nearest) visibility polygon [9][7].

Given FV(Q,p) with p inside conv(Q), we can com-
pute a longest proper chord through p. This longest
proper chord will be a longest chord, proper or not, of @
that extends through p. If p is outside conv(Q), we still
can find FV(Q,p) in O(n) time, and compute its longest
chord in linear time.

3.4 Some properties of visibility poly-
gons

Let edge e = ab, conv(Q) be the convex hull of Q,
NV(Q,p) and FV(Q, p) are the nearest and farthest vis-
ibility polygons respectively, with respect to an internal
point p.

1. nPEe NV(QIP) = NV(Q, a) n NV(Q1 b)
=NV(NV(Q,a),b)

2' UpEe NV(Q’p) 2 NV(Q,G) U NV(Q>b)

3. Upée FV(Q’p) = FV(Q’G) U FV(Q: b)
= FV(FV(Q,a),b)

4. ane FV(va) g FV(Q,G)“FV(Q,I))

5. NV(Q,p) C Q C FV(Q,p) C conv(Q)

Note that both items 1 and 3 can be computed in O(n)
time [9]. Item 2, the so-called weakly (nearest) visibility
polygon, can be computed in O(nlogn) time [10][4] or
O(n) time plus the time to triangulate Q [8]. Item 4,
the so-called strongly farthest visibility polygon, can be
computed in O(nlogn) time using duality, as well as
Chazelle and Guibas’s algorithm [4] for item 2 above.
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4 Shortest chords through a
non-external point

Given any polygon @, the shortest chords through an
ezternal point p of Q must have length 0. Therefore, we
shall consider cases where the point p is internal to or
on the boundary of Q.

Given a star-shaped polygon @ and a point p in its
kernel, the edge segments @jaz and b,b, are said to be
an antipodal pair of segments of Q) through p if and only
if: ‘ .

1. a;, p, and b; are collinear, and a3, p, and by are
collinear. ‘

2. @jas is a subset of an edge of @, and b,b, is a subset
of another edge of Q.

3. at least one of the points a; and b, is a vertex of @,
and at least one of the points a; and bs is a vertex

of Q.

For a star-shaped polygon @, with the point p in its
kernel, there are at most n antipodal pairs of segments.
A shortest proper chord through p between an antipodal
pair of edge-segments of @, can be found in time inde-
pendent of n. This can be done by applying Newton’s
method to find a root of the chord-length function y(f)
described in Theorem 1. Therefore, by scanning the n
antipodal pairs of segments in order, a shortest chord of
Q through the point p can be found in O(n) time.

What if the polygon @ is not a star-shaped polygon
with p in its kernel? Construct the visibility polygon
NV(Q,p) of the polygon @ with respect to the point
p in O(n) time. Then the shortest chord of @ through
the point p can be computed as the shortest chord of
NV(Q,p) through p.

5 Broken chords: a generaliza-
tion

A polygonal chord is a line segment that connects two
boundary points of a polygon. We wish to generalize the
notion of chords by introducing the notion of a broken
chord as follows:

A broken chord with a wedge-angle 4 broken at an
internal point p of a polygon @ is made up of a pair
of line segments 5p and pf, where s and t lie on the
boundary of Q, and the angle £(s,p,t) = € [0,7]. Itis
written as spt. A broken chord of Q with a wedge angle
v broken at p is called a (v, p) broken chord of Q.
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Figure 4: a broken chord

For example, in Figure 4, uv is the longest chord of
the polygon @, which passes through the point p and a
vertex u. For vy = %7&', the longest (,p) broken chord
is formed by the pair of segments 3p and pt, where the
point s is a vertex of Q.

Consider the (7, p) broken chords broken at the point
p which have a fixed wedge-angle v, where 0 < v <
7. When v = =, a (v, p) broken chord is the same as
a polygonal chord that passes through p. When vy =
0, a (y,p) broken chord coincides with a line segment
connecting p to a boundary point, but the broken chord
has twice the length. It turns out that the chord-length
function for describing a broken chord spt between a
pair of edges (or a single edge) is unimodal. The proof
is almost identical to that of Theorem 1.

Let us assume that the polygon @ is star-shaped, and
the point p is in the kernel of Q. All (v, p) broken chords
of @ (through the point p), for all angles v € [0, ], must
lie entirely in Q. With results from similar to those of
sections 2-4, we are able to compute longest or shortest
(7,p) broken chords of Q in O(n) time, where the edge-
angle v is fixed.

What if the polygon @ is not star-shaped or p is not in
its kernel? When we wish to compute longest or short-
est (v,p) broken chords that are proper, all we need is
to compute the visibility polygon NV(Q,p) of the in-
put polygon @ with respect to the point p. Then a
longest and shortest (v,p) broken chord of NV(Q,p)
can be computed. When we wish to compute longest
or shortest (7, p) broken chords that are not necessarily
proper, all we need is to compute the farthest visibility
polygon FV(Q, p) of the input polygon @ with respect to
the point p. Therefore we conclude that both the longest
and the shortest (7, p) broken chords of FV(Q, p) can be
computed in O(n) time.
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