Shortest Paths, Visibility, and Optimization
Problems in Planar Curvilinear Objects *

Elefterios A. Melissaratos and Diane L. Souvaine
Department of Computer Science, Rutgers University, New Brunswick, NJ 08903

May 15, 1990

1 Introduction

Souvaine and Dobkin [10],[2] defined the splinegon as a curved polygon in which the region
bounded by each curved edge and the line segment joining its endpoint is always convex. They
developed techniques and algorithms for solving many problems on splinegons, using the same
structure as the original straight-line solutions and achieving the same asymptotic complexities.
One polygon technique, however, is decomposition into the triangles or arbitrary convex pieces.
Curved objects can be inherently non-convex and some curved objects cannot be triangulated
without adding additional vertices, both on the boundary and in the interior. But horizontal
visibility and monotone decomposition (linear-time equivalent to triangulation on polygons [8])
can be computed equally efficiently on splinegons. Dobkin et al. conjecture that problems for
which the best known polygonal algorithm depends on triangulation or convex decomposition
may in fact be solvable equally efficiently using monotone decomposition in algorithms easily
modified to accommodate splinegons [3],(2],[10].

In this paper, we study a collection of optimization and visibility problems for which the
best known polygonal algorithms require a balanced decomposition of the polygon and/or the
shortest path tree, both derived from a triangulation of the polygon. We begin by defining
a linear time and space refinement of the horizontal visibility decomposition of a splinegon,
the bounded degree decomposition, in which each component is either a triangle (straight line
or curvilinear) or a quadrilateral with two opposite sides on the boundary of the splinegon.
This decomposition facilitates the generalization of the polygonal shortest path tree algorithm
[6] and algorithm for computing the factor graph of a polygon [1],[5] to splinegons with no
asymptotic penalty. These tools can then be used, as in the straight-line polygon case, to
generate efficient algorithms for visibility problems such as visibility from an edge, ray-shooting
and two-point shortest paths (for polygonal algorithms, see [1], [5], and [6], respectively), and
optimization problems such as computing minimum-length area-separator and the maximum
inscribed triangle (for polygonal algorithms, see [9]). Although most of the algorithms for
curvilinear objects obtain the same asymptotic complexity as their polygonal counterparts,
the maximum inscribed triangle algorithms does not. We conjecture that some curvilinear
problems are inherently more difficult that their polygonal counterparts.

*This research was supported in part by NSF grant CCR-88-03549 and DIMACS Center STC88-09648.

337

338

2 Preprocessing Splinegons

Theorem 2.1 Any simple splinegon can be decomposed in such a way that each component
has at most three neighbors, in the same asymptotic time complezity as triangulating a simple

polygon.

Proof: To begin, preprocess the edges of the splinegon such that each edge is monotone with
respect to both the z and the y axes, i.e. insert the extrema of each splinegon edge with
respect to either axes as a new vertex, without duplicating edge endpoints. The convexity of
the splinegon edges means that each edge can have at most one minimum and at most one
* maximum relative to each axis, and, consequently, the additional number of edges or vertices
is at most 4n. If the constant time suffices to compute the extrema of any edge, then this
preprocessing uses O(n) time. Next, decompose the splinegon into horizontal trapezoids (with
curved sides) [11], [3], producing a linear number of new vertices. Ordinarily, there will be
at most one interior vertex per trapezoid edge, but in some applications several vertices may
have the same y-coordinate, producing an arbitrary number of vertices within a base of a
trapezoid. Thus some trapezoids could have an unlimited number of neighbors. Refine the
curvilinear trapezoids case by case, adding new vertices only on splinegon boundaries so that
every component has at most three neighbors and the dual of the decomposition is a binary
tree as in polygonal triangulations (fig. 1). o

Theorem 2.2 The shortest path tree inside a simple splinegon with a designated root can be
computed in O(n) time, given the bounded degree decomposition.

Proof: In [6] the authors describe a linear time and space algorithm for finding the shortest
paths from a vertex v of a triangulated simple polygon to all the other vertices. The union of
these paths form a tree called as the shortest path tree which subdivides P so that each region
corresponds to a funnel based on some polygon edge i, denoted F,(i) (fig. 2a). Extending
the edges of each funnel up to their intersection with the funnel’s base produces a refined
subdivision of P called the shortest path map (fig. 2b) The subdivision of a specific edge i is
denoted by S,(i) and its size denoted by s!. For any point z in P, anchor®(z) represents the
last vertex on the shortest path from s to z (see [6], [7]).

The main step of the polygon algorithm is as follows: given a funnel and a triangle, with one
of its sides coincident with the funnel base, split the funnel into at most two funnels which
have bases the other two edges of the triangle. In splinegons, however, a convex chain of a
funnel is a concatenation of straight line segments and convex curved segments. If the shortest
path map is formed by extending the straight line segments of the funnels and the tangents
at the endpoints of the curved segments up to the intersection of the corresponding splinegon
edge, for a point z moving within a single component of the shortest path map, anchor®(z) is
not a constant function but instead takes its values along a particular convex segment of the
splinegon boundary. Thus, the funnel splitting operation may create a new vertex either in the
funnel or in the boundary of a new component or on both. Luckily, a region with 2 children
must be a straight-edged triangle, so only regions with at most 1 child need new processing.
Splitting these funnels may involve computing tangents from a point to a curve or between a
pair of curved edges and, since each node is a quadrilateral, there are are two splitting points
rather than just one. But we may assume that each curved operation requires constant time
[2]. Careful analysis of splitting in finger search trees shows that the total work over all zero or
one child cases remains O(n) and thus the recursive formula used in [6] to prove the linearity

of the entire algorithm still applies.!

Theorem 2.3 The factor graph and the augmented factor graph of a simple splinegon S can
be computed in O(n) time and space, given the bounded degree decomposition.

Proof: The polygonal algorithm extends easily to splinegons [1]. The balanced decomposition
tree of S can be created in linear time and space [6]. Let S; be a splinegon at level ! in the
decomposition tree. Let d; be the bisecting diagonal of S;. It is known that the boundary of Si
consists of some edges of the initial splinegon as well as of some bisecting diagonals. The factor
graph is an augmented decomposition tree with edges between d; and the bounding diagonals of
Si. In some applications, the hourglass corresponding to each pair of diagonals is also needed.
These edges and hourglasses are added bottom-up, as in the original polygon algorithm (1]. If
for every splinegon component in levels 1...k, the hourglasses between any pair of bounding
diagonals has been computed, level k + 1 is obtained by “deleting” all the diagonals at that
level and computing the hourglasses between any bounding diagonal of the left component and
any bounding diagonal of the right component by concatenating two hourglasses at level k.
Since one hourglass can use O(n) space, the augmented factor graph could use O(n?) space
overall. By keeping each edge of an hourglass only at the highest level in which it appears in
the tree, the augmented factor graph can be constructed in O(n) time. Its size is O(n) and
each node has degree O(logn). o

3 Applications

Theorem 3.1 Computing the part of the boundary of a simple splinegon P of n vertices which
is visible from an edge requires O(n) time given the horizontal visibility decomposition of P.

Proof: Given an edge j of P, we wish to compute all points z on the boundary of P for
which there exists at least one point y on j such that zy C P. The polygon algorithm uses
the fact that if edges i, j are visible from each other then the shortest paths from p;;; to
pi (SPy;,,(p:)) and from piyy to p; (SPp,,,(p;)) are inward disjoint convex chains [6]. For
splinegons, this fact does not hold (fig. 3). We present a new method for both polygons
and splinegons based on local computations. Find the shortest path maps from p; and p;;
respectively. Merge Sp.(i) and Sp,,, (i) into a linear-sized subdivision M. If z moves along an
elementary segment I of M, the anchors of z with respect to the endponts j remain unchanged.
Thus we can unambiguously refer to anchor?i(I) and anchorPi+1(I). For each I, perform the
following simple test: If anchorPi+1(I) <> anchorPi(I) then for every point z on I, z is visible
from edge j. a

Theorem 3.2 Given the factor graph of a simple splinegon S, a query point ¢ and a ray passing
through q, the first intersection of the ray with the splinegon can be reported in O(logn) time.

Proof: Locate the query point ¢ in the decomposition [4]. As in [1], find the the diagonal
crossed by the shooting ray closest to the root of the decomposition tree. Descend the aug-
mented factor graph as follows: at each node visited check either its L(v) or R(v) list; for
each w in L(v), test if the ray from g avoids the hourglass corresponding to the edge (v, w);

1We can also compute the shortest path tree in linear time directly from the horizontal visibility decomposi-
tion without the overhead of computing the bounded degree decomposition by using multiway splitting of the
funnels. Some applications require the bounded degree decomposition, however.

339

340

at a leaf, no such hourglass exists but the edge of the splinegon intersected by the ray can be
computed in O(1) time. To achieve the O(logn) complexity, transform the factor graph so
that it has bounded degree. Using fractional cascading, the O(log n) intersection tests between
convex chains and line can all be accomplished in O(logn) time. This algorithm differs from
the original polygon algorithm [1] in only one respect. In the polygon algorithm, the test of
whether a line intersects an hourglass is transformed to the dual problem of point inclusion
in a convex polygon, solvable using a variant of binary search. Since no duality tranforms are
known to apply to curved objects, we solve the line-hourglass intersection problem directly
using binary search on the two convex chains bounding the hourglass. a

Theorem 3.3 Given the factor graph of a simple splinegon S and two guery point p and gq,
the shortest path from p to ¢ and its length can be reported in O(logn + k), where k is the
number of segments in the path.

Proof: The polygon algorithm [5] extends directly. Locate the points p, g in the decomposition
[4]. Find the lowest common ancestor d of the regions containing p,g. Starting from p, ¢
follow the path to d, collecting all diagonals which separate p and ¢. Between any pair of
consecutive diagonals corresponds an edge of the factor graph. Concatenate the hourglasses
which correspond to these pairs of diagonals, producing a “big” hourglass. Find the tangents
from p, q to this hourglass. The O(logn) query and linear space and preprocessing results from
augmenting only the subgraph of the initial factor graph consisting of the first O(n/logn)
nodes. a

Theorem 3.4 The minimum length area-separator of a simple splinegon can be computed in
O(n?) time and O(n) space.

Proof: If two points z and y lie on the boundary of simple splinegon P and define a directed
line segment zy C P that separates P into two sets P, and Pp with given areas K and
KR, respectively, then zy is called an area-separator. An area-separator for a splinegon may
not exist; for example, there are splinegons that cannot bisected (i.e. Kr = KRg). A direct
extension of the polygon algorithm [9] finds the minimum length separator, if one exists, and
reports the degeneracy otherwise.

Assume that point z is on edge ¢ and y on edge j. The idea is to fix a particular edge
j, find the shortest path maps from its endpoints, and merge Sy, (i), Sp;,,(¢). The area of
P to the left (resp. right) of SPp,,,(p:) is denoted ALy, (p;) (resp. ARp;,,(p:)) . For each
elementary segment I of i such that AL, (p:) < KL, and AR,,,.(p,-.,.l) < Kpg, we wish to
find points z = (z1,¥1) and y = (22,¥2) on I and j respectively such that a) the anchorPi(I)
and anchorPi+1(I) do not lie in the same open halfspace defined by zy, b) the area of the
curvilinear quadrilateral p;zyp;+1 equals Kz — ALy, (p:), and c) length of zy is minimum.
This continuous optimization problem can be solved in O(1). The linearity of the shortest
path trees implies a total of O(n) elementary segments, yielding an O(n) algorithm to find the
separator zy when y lies on a fixed edge i. Summing all over edges i we get an O(n?) time
algorithm.) . : (m]

Theorem 3.5 The mazimum area or perimeter triangle inscribed in a simple splinegon can
be found in O(n*) time and O(n) space.

Proof: For three points z,y, z on the boundary of a simple splinegon P to define an inscribed
triangle, they must be pairwise visible. Fix edges i and j and find the maximum triangle zyz

s
e

341

such that z lies on any edge k but y and z lie on i and j respectively. Repeat the process for
all the pairs i and j. To do so, construct the shortest path maps from the endpoints of edges
i and j. Merge these four shortest path maps to create a set of elementary segments on the
boundary of P. Let seg;, seg; and seg;. represent arbitrary triple of elementary segments on
edges 1, j and k, respectively. The goal is to find points z, y, z on segx, seg;, seg; respectively
such that anchor?i(z) and anchorPi+1(z) lie in the opposite half-planes defined by the line
through z and y, also anchorPi(z) and anchorPi+!(z) lie in the opposite half-planes defined by
the line through z and z and finally anchor?i(y) and anchorPi+1(y) lie on the opposite sides
of yz and the area of zyz is maximum. This is a continuous optimization problem (possibly
infeasible) with a constant number of constraints in a constant dimensional space, thus solvable
in constant time. :

This algorithm calls the shortest path algorithm O(n?) times, using O(n®) time. The num-
ber of triples of elementary segments for a triple of edges is O((s5'*' + s}’ + 87’ + 857*")s;7+' 7).
Thus the total number of calls of to the continuous optimization procedure

z: Z((’zﬁx + ‘:i o+ ‘:‘ + ai“‘)sf“‘a?‘)
: k=1

n
=1 j5=1

Since s} < n, the above sum is O(n*). In the polygon case, at least two of anchorPi(z),
anchor?i(y) and anchorP*(z) must lie on the boundary of the triangle. Thus, it was possible to
reduce the number of triples of elementary segments considered overall to a quadratic number,
yielding a cubic algorithm [9]. This reduction is not possible in the splinegon case, leaving an
asymptotic gap between the polygon and splinegon solutions for this problem. a

References

(1] B. Chazelle, L. Guibas, “Visibility and intersection problems in the plane,” Proc. of ACM Symp.
Comp. Geom., 1985.

[2] D. Dobkin, D. Souvaine, “Computational geometry in a curved world.” Algorithmica 5 (1990).

[3] D. Dobkin, D. Souvaine, C. Van Wyk, “Decomposition and intersection of splinegons.” Algo-
rithmica, 3 (1988), 473-485.

[4] H. Edelsbrunner, L. Guibas, G. Stolfi, “Optimal point location in monotone subdivisions.”
SIAM J. Comput., 1986.

[5) L. Guibas, J. Hershberger, “Optimal shortest path queries in a simple polygon.” Proc. ACM
Symp. on Comp. Geometry, 1987.

[6] L. Guibas, J. Hershberger, D. Leven, M. Sharir, R. Tarjan, “Linear time algorithms for Visibility
and shortest path problems inside triangulated simple polygons.” Algorithmica 2 (1987), 209-
233.

[7] J. Hershberger, “An Optimal Visibility Graph Algorithm for triangulated simple polygons.”
Algorithmica 4 (1989), 141-155. -

[8] A. Fournier and D. Y. Montuno, “Triangulating simple polygons and equivalent problems,”
ACM Transactions on Graphics 3 (1984), 153-74.

[9] E. A. Melissaratos, D. L. Souvaine, “On Solving Geometric Optimization Problems Using Short-
est Paths,” Proc. of the 6th ACM Symp. on Comp. Geometry, June, 1990.

(10] D. L. Souvaine, “Computational Geometry in a Curved World.” Ph.D. Thesis. Pri .
versity, October, 1986. - Thesis, Princeton Uni-

[11) (Rl..gli;l)\ma.n, C. Van Wyk, “Triangulation of a simple polygon,” SIAM Journal of Computing

342

d

Figure

GJP QL)(O(owe Vh»‘L&
bl the chorkar paihs 400

g fo o awd b P C &
ho} tmward CO9/EX ’

Figure 2: a) Funnel; b) Shortest-Path Map

