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ABSTRACT
The problem of computing the depth of collision between
intersecting convex objects is considered in this paper. Two
measures are given and algorithms are developed for computing the
measures.

1.INTRODUCTION

Given two static objects A and B, there are several scalar measures
to describe their spatial relationships. These measures are useful
for applications like planning in robotics(1) and VLSI layout(2). The
focus to this day has been primarily on computing the minimum
distance between non intersecting objects(3),(4) .

In this paper, we concern ourselves with a problem on intersecting
objects. We attempt to characterize the intensity of penetration
between two intersecting objects. We define what is called depth of
collision, discuss prior work on measures for depth of collision and
then present a new measure. We present algorithms for computing
the measures when the two objects are convex polygons.

The problem of depth of collision finds application in collision
detection. Collision detection may be viewed as a sub step for path
planning algorithms. Detecting the exact instances at which a
collision occurs and reporting all the instances in a generate and
test procedure for planning is facilitated by computing the intensity
of penetration between the colliding objects.

In the next section, we define our problem and discuss a measure
introduced by Cameron and Culley(5). In section 3, we present an
algorithm for computing the measure defined in (5). In section 4, we
develop the new measure and give some of its properties. In section
5, we give the algorithmic details for computation of the new
measure. We give some ideas on computing D(d;A,B) between simple
polygons in section 6. We conclude in section 7 indicating scope for
further work.
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2.DEFINITION OF DEPTH OF COLLISION
Let A and B be convex, compact sets in R2 such that ANB # ¢. How
deep is the collision between A and B?

An intuitive way of quantifying depth would be as the diameter of
the largest circle contained in A ™ B. This measure is however
inadequate. A reasonable way of defining depth of collision would
be as the least distance by which B has to be translated so that it
just separates from A.

A natural measure that results from this definition is the one
defined by Cameron and Culley, called as MTD( Minimum
Translational Distance). The authors have presented an algorithm
for computing the MTD function between two convex polyhedra. The
basic idea is to recast the problem of computing MTD as a
configuration space problem and forming the configuration space
obstacle.

Buckley and Leifer(6) have also defined the same measure
independently. They report a time bound of O((m+n)2 log(m+n)) to
compute the measure in three dimensions when the objects are
convex polyhedra with a total of (m+n) vertices.

We will call the measure defined by Cameron and Culley as I(A,B).In
the next section, we will sketch our algorithm for computing K(A,B).
It turns out that computing I(A,B) is expensive in three and higher
dimensions . We have given a general method based on the Fourier
Elimination technique(7) to compute |(A,B). However, our method
also has exponential time complexity and is not suitable when the
dimension is large. We have therefore defined a new measure that is
easier to compute.

3.COMPUTATION OF I(A,B)

We need the following definition:

Definition 1:Given two sets, A and B their Minkowski sum is given by
A @ B={a+b:a€¢ A, b€ B}

The above operation can be viewed as convolution(8). Minkowski
difference, A e B, is also defined similarly.
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Our algorithm is based on the linear time result of Lozano-Perez(9)
and Guibas et al( 8) to compute the convolution when the objects are
convex polygons.

We assume the coordinates of vertices of the polygons are available.
Let A and B have m and n vertices respectively.

Algorithm compute_I(A,B):

1. Find A e B in linear time using the algorithm of Lozano-Perez, as
an ordered set of vertices, uQ, ..., Uk.

2.For i=1,...,k: let Lj be the |me passmg through uj-1 and u. (indices
are modulo k). Lj contains the i-th edge of A e B. Determine xj , the
point on Lj nearest to the origin and set rj = || xij||2.

3. Compute I(A,B)= min{rj : 1< i < k} and find an index g such that
rg =I(A,B). Stop.

It is easy to see that the algorithm runs in O(m+n) time and it is
optimal.

4 THE NEW MEASURE AND ITS PROPERTIES
We define the new measure, D(d; A,B) as follows:

Given X € R2,d€R2 and B €R, let
X(d, B) = { x + Bd : x € X},
and

- (U X(dB)
BER

Then
D@ AB) = | max{B: ANB@B)#£ ¢}, if AN B(@) # o:

-0 , Otherwise .

When A/ B(d)#£¢, D(d; A,B) denotes the maximum amount by which
B has to be translated along d, while still remaining in contact with
A.

The properties of D(d; A,B) are summarized by the following lemma.
We omit the proof since it is easy.
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Lemma 1:

(i) D(d; A ,B) = D(d; A e B, {0})

(i) D(g; A,B) = D(-d; B,A)

(ii)D( ad; A,B) = (1/ a ) D(d; AB), ¥ a2 0

In the next section, we present an algorithm for computing D(d; A,B).

5. COMPUTATION OF D(d; A,B) BETWEEN TWO CONVEX POLYGONS

We will first introduce some notation and review some known
results which we will usé later.

Definition 2: A ray starting from a paint a in the direction d is given

by R(a,d)={a+ Ad: A 3 0}.

Definition 3 : Let « ,p € R and —w < << B < . Define [ <] =
[tec<t <P}i(=B )=({t: =< t <p} . Consider functions of the
form f[«=,B] — R. Then f is piecewise affine if it is continuous and
there exists a finite set of points, { =i }i=1 Such that

(i) o= <o) < <ocr=P;

(ii) the restriction of f to [ = i, =i+1] i6 an affine function for each
i=1,...,r-1.

The pmnts « and B, together with those points in ( ~,B) at which
the slopes of f has jumps are called the %mafkmams of . The set of
breakpoints of f can be taken to be the same as {«331,1 Letfj =

f(ec), i=1,...r. Then the set {(=i.fi)} j=1 is called the sorted

representation of f.

We will now present an algorithmic result. This requires a
knowledge of unimodal and bimodal sequences(The reader is referred
to (10)).

Pp-il
Proposition 1: The extrema of a bimodal sequence { ’ﬁk}i‘g can be
computed in O(log p) time which involves atmost an O(log p) number
of 8k  evaluations
Proof: Chazelle and Dobkin(10) give an algorithm and this
complexity result

We associate bimodal sequences to the vertices of the polygons and
then use the result of Proposition 1 to get the time bound for our
algorithm.



Our approach to find D(d;A,B) is based on a formulation of the
problem in terms of maximization of a piecewise affine concave
function( The reader may refer any standard text on convexity for
definitions, for instance Rockafeller(11)). We will now present
several results on piecewise affine functions.

Proposition 2: A piecewise affine function f attains the maximum at
one of its breakpoints.

Proposition 3: Suppose f is piecewise affine with the sorted
representation, as given in definition 3. Then, given any t € [, B],
f(t) can be computed in O(log r) time.

Proposition 4: Suppose f1 s plecevglse affine and concave with its
breakpoint set given by B_1 = { °=1 }l 1 . Also let 12 bg piecewise
affine and convex with its breakpomt set B_2 = { o 2 } i=1 . Then f =

f1-f2 is piecewise affine and concave, and its break point set , B is
given by B= B_1 U B_2.

Proposition 5: Consider a piecewise affine concave function f with
sorted representatlon as in definition 3. Let { t] f j=1 be any sorted

subset of{ xl} i=1. Then the sequence { f(tj)}]— is unimodal.

We will now present the algorithm to maximize the difference
between a piecewise affine concave function f1 and a piecewise
affine convex functlon f2. Let the sorted ,representations of f1 and

2 be {(el,f] )}|=1 and {(oc f2 )}. respectively. Let us call
the result as f*

Algorithm max_diff: /!

1. Compute the maximum of the unimodal sequence, {f(ocJ1 )}] 1 using
Kiefer's algorithm( 12). Denote the maximum by F. Whenever a f(al)
is needed by Kiefer's algorithm, evaluate it as f(on1 )= f1 - 2 (a1 ).

2. Find max {f( 052 ): 1 <j< r2} by a similar procedure and denote it
by G.
3.Set f*=max(F, G) and stop.

The above algorithm computes f* in O(log r1 x log r2 ) time.

{
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The algorithm to find D(d;A,B) takes O(log m x log f) time and is
crucially based on computing f*. The additional step is to transform
our polygons A and B into uhboufided polyhedra A' and B' using the
following step:

A =A +R(0»'d)

B' = B +R(0,d) | .

The unbounded polyhedra can bé derived in logatithmic time.

Remark: The special cases when an edge of A' is grazing ah edge of B'
can be handled easily and D(d:A,B) will take constant time. Our
algorithm ean also be extendéd to the ¢ase A N B =9. In this case ,
D(d;A,B) denotes the minimum distance by which B has to be
translated so that it moves to the 'other side' of A.

6.COMPUTING D{d:A,B) BETWEEN SIMPLE POLYGONS

The problem of eomputing D(d;A,B) is mare difficult when the
objects involved are simple polygons. This is because a ray from any
point p in the plane aleng a direction d can intérgect a convex
polygon in atmost two points. But this is not true in the ease of a
simple polygon and there ¢an be O(n) intersections with a simple n-
gon. So a naive algorithm to compute D{d; A,B) will take O(mn) time
where A and B have m and n vertices respectively.

However, it is not necessary to commpute all intersections of a ray
with the simple polygon for computing D(d;A,B). It is adequate if we
first deterimine the ‘'last' of 'rightmost intergection in the direction
d with A (of rays from the vertices of B) and then the 'farthest
intersection of rays from the vertices of A along -d with the polygon
B. So our time bound can be improved if we look closely into the
work of Chazelle and Guibas(13 ) where the case of computing a
single intersection has been considered. We believe therefore that
D(d; A,B) can be computed in O(mlog n + nlog m) time.

7.CONCLUSIONS

The problem of computing the depth of collision between
intersecting objects has been ¢onsidered in this paper. We have
defined depth of collision, given measures and also developed
algorithms to compute the measures.

A natural question is computation of depth in three dimensions. We
have considered this problem in {14) and given algorithms. An
interesting open problem is efficient computation of I(A,B) in three



and higher dimensions. It would also be worthwhile to consider
other applications of the max_diff algorithm.
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