26

Bottlenecks Identification in General Junctions*

Ahsan Abdullah
Department of Computer Science
University of Southern California

Los Angeles, CA 90089, USA

Abstract

Consider n non-overlapping rectangular poly-
gons. Let the interpolygon space be denoted by
p, p is rectangular if all polygons are identical.
However, for variable size rectangular polygons,
p is non-rectangular with rectilinear boundary,
let us denoted this by . 7 can be divided into
rectangles, and the union of these rectangles is
called a junction. 7 may have L-, S-, T- and X-
shaped junctions. We consider the problem of
identifying bottlenecks in general junctions. We
present an algorithm, which uses a simple data
structure, and identifies the bottlenecks in O(n)
time and space. Furthermore, the algorithm can
also be used to generate the visibility graph for
rectilinear visibilities.

1 Introduction

The building block strategy for VLSI layout consists of
two sub-problems, Placement and Routing. Placement
consists of assigning positions to modules (e.g. ICs,
Macro cells) on a carrier (e.g. Printed Circuit Board,
Silicon Wafer) according to some objective function,
while Routing consists of assigning paths to intercon-
nections among modules through the intermodule space
(channel). When variable size modules are used, non
rectangular channels with rectilinear sides are created.
The channel space can then be divided into rectangles,
and the union of these rectangles is called a junction.
For Building Block layout, L-, S-, T- and X- shaped
junctions are created. In this paper, we consider the
problem of identifying the routing bottlenecks in the
channels of general junctions.

L-, T- and X- shaped non-skewed junctions were first
considered in [13]. In [10, 11] skewed junctions were
also considered, and bounds were given for the widths
of the channels of general junctions. The bounds were
dependent on the crossings of interconnect in the junc-
tions.

One solution to bottleneck identification could be based
on “simple” visibility check. Two modules are said to be
visible, if they can be joined by a line, such that the line
does not intersects with any other module/s, this is re-

*This research was supported by S & T Scholarship, Govt. of
Pakistan.

peated for all pairs of visible modules. The bottlenecks
could then be identified as the minimum length visibil-
ity lines. However, this approach may not be suitable
due to the following reasons: i) The fastest algorithm
for generating the visibility graph for disjoint polygons
takes time O(E + nlogn) [5], here E could be O(n?).
This problem was also solved by [2, 9] and [16] in time
O(n%logn), O(n?) and O(n?) respectively. ii) Even if
we had a faster algorithm, it is not necessary to gener-
ate all the visibility lines. Consider Fig. 2(f), lines are
drawn between all pairs of visible modules. Fig. 2(c)
shows the lines generated by our algorithm. Note that
the lines are fewer, asymptotically they could be O(n)
times fewer.

We make the following assumptions i) Rectangular mod-
ules are placed on an invisible rectangular grid, such
that there are no modules smaller than the unit square
(of the grid). ii) The dimensions of the modules i.e.
Height (H) and Width (W) are O(1) w.r.t to the num-
ber of modules. iii) The distance between modules is
O(1). Note that these assumptions are not impractical.
Since, asymptotically, the dimensions of the modules
can be considered to be constant. Also, the length of
the interconnect is proportional to the distance between
modules, therefore, closely packed modules reduce that
length.

2 Definitions and Notation

The junction will be defined as in [11, 10]. An L-
junction L(1;, 12, %o, ¥o) is an “L” shaped region, which
is the union of the following rectangular regions (see
Fig. 1(a)):

L=iz’y 1-‘D<0:—11$yS0}
T={(z,y):0<z<t,0< y}
J1= %3»!!10535%:-415!150;
Jo={(z,¥):0< <1, -y <y<0

y <

The sets L and T are referred to as the left and top chan-
nels and J; N J, as the junction region. Any s.iortest
Manhattan path between (0,0) and (z,, -y,,{ is called
the, bottleneck of the junction region. A non-skewed L-
junction corresponds to z, = i, and y, = t;. The S-,
T- and X- junctions are shown in Fig. 1(b)-(d), and
can be defined similar to L-junction, see [10]. Fig. 2(e)
shows some junctions, e.g My, Ma, M5 and M7 define an
L-junction, My, M7, My, and M,; define a T-junction,
and M;, My, Mg and M, define an X-junction.

Consider module M,, let (XL,,Yp:) be the bottom left
vertex of M;, and let (Xg;, Y7;) be the top right vertex.
For a module M,, only these two vertices are stored.
The i*" vertical line between the top and bottom of the
carrier ! is denoted by V;, H; is defined similarly. H, is
the top edge of the carrier and V, it’s left edge. Vig,¢ is
the last V line put back, after it was tentatively removed
in procedure Line-Removal, initially Vig,, = V,. The
minimum length visibility line between a vertex and an
edge of modules M; and M; is denoted by Dy, ;)

SV, 1s the set of all modules which intersect with V;,
SVii,;) = SV U SVj, similar definitions for SH; and
SH(,-‘J'). SVH(,-J):SVOG“’,-_'_” n SH(j’j+1). When V; is
to be removed in procedure Line Removal, a rectangle,
WINDOW is defined by Vi,,:, V;+1 and two adjacent H
lines. A CELL is a rectangle defined by V;,V;4; and
H;,Hj41, it is used in procedure Neighbor-Check,
GRID[i+1, j+1]=CELL. a € (~1,0,+1),8 € (—1,+:2,
¢.g 1 + a could be i-1, i, i+1, similar result for 1 + 8.
Note that GRID[i + a, j + a] is invalid for a = 0.

3 DProcedure descriptions

A brief description of four main procedures used in our
algorithm.

3.1 Line-Generation

As mentioned in Introduction, we assume all modules
to be on an invisible rectangular grid. The purpose of
this procedure, is to make only those grid lines “visible”,
which intersect with (Xz;,Yp;) and (Xg,, Yri). Fur-
thermore, the procedure also identifies those modules,
whose vertices do not intersect with any of the V/H grid
lines, but their edges do intersect. In Fig. 2(b), for V
grid lines, top and bottom edges of M; intersect with
V3 and V.

3.2 Line-Removal

This procedure will discretize the carrier. This is
achieved by selectively removing only those grid lines,
such that, atmost one module, or part of one module
lies inside the WINDOW. Consider modules My, M; €
SV H,). if any vertex of both modules lies inside the
WINDOW, then V, is not removed and Vj,,; = V;. Note
that there can be a constant number of vertices inside
a WINDOW. Techniques are given in [14] to determine
a point inside a rectangle. In Fig. 2(b) dotted lines are
removed.

3.3 Neighbor-Check

After Line-Removal, each CELL will have atmost
a single, or part of a single module. This enables
Neighbor-Check to “know” the location of the mod-
ules w.r.t each other. Furthermore, there is no need
to check the visibility between say GRID[1,1] and
GRID[5,5]. Since, they may not be visible from each
other because of the modules in the other 11 GRID[Js

} Assuming a rectangular carrier.

27

obstructing the visibility line. However, even if a vis-
ibility line was possible, it would be eliminated in the
Min-Distance procedure, therefore, there is no need
to compute it in the first place. Hence, it is only neces-
sary to note the minimum length visibility lines between
GRID}, j] and GRID[i + a, j + a.

D(,,y) is generated between GRIDJ, j)(# ¢) and:

1. GRID[i+a, j+a] IF GRID[i+a, j+a] # 6.

2. GRID[e; + a, e + o] # ¢ for every GRID[i+3,
j+B]=GRID[e;, e;]=¢.

3. Every GRID[h; + h,j + a] # ¢ IF atleast one
GRID[i+p, j]=GRIDIh;, j]=¢. Note that h is some pos-
sitive constant. Similar result for GRID[i, j+23].

This procedure will also store the end points of D(g,y)
at GRID(i, j] for M., at GRID[a,b] for M,, and in
the GRID| Js defined by the Grid Vector (GV), having
GRID{j, j] and GRID|a,b] as the two end “points”.

3.4 Min-Distance

This procedure decides which Dy, ;) to keep for the pairs
of visible modules identified. Consider two intersecting
lines D(q4) and Dy, y) among k * lines whose end points
are stored at GRID[i, j]. Also assume that, they are nei-
ther vertical nor horizontal. Let R, ;) and R(;) be.two
rectangles having D, ;) and D, as their diagonals,
respectively. Only that D will be kept, for which no
module M in GRID[a+a, b+c] and GRID[x+a, y+a]
intersects with the rectangle R correspanding to D. For
vertical and horizontal intersecting lines inside GRIDj,
J), shortest is kept. If both lines equal in length, either
V or H is kept. Fig. 2(c) shows the necessary visibility
lines generated, and Fig. 2(d) shows the corresponding
bottlenecks.

For any two modules in neighboring GRID] Js, we gen-
erate all sixteen lines between them and then pick the
shortest visible line. Since number of intermodule visi-
bility lines is constant, therefore, we do not use efficient
techniques such as given in [4, 12, 15].

4 Computational Complexity

As a result of assumptions ii) and iii) in Introduction,
the area of the rectangular carrier will be O(n). There
can be two extremes, such as, W==O(n), H= O(1), and
W=0(1), H=0(n), and in-between we can have other
values of H and L, such as W=H=0(n%%). Further-
more, the variation in the positions of the modules will
be O(n), therefore, we can use bin-sort to sort Xr;, Xg;
and Y7, Yp; so as to assign M; to V; and Hy.

Sy, Sy and V, H lines are implemented by sorted
linked lists. During different operations, the lists are
kept sorted by using pointers to the modules being con-
sidered. To get SV H(; ;) we use the technique in [1]
with selective checking, therefore, SV H(; ;) takes time

O(1). The complexity of different procedures depends

20 < k < 6,6 is some constant.

28

on the size of the grid, which is O(n). Therefore, the
complexity of our algorithm is O(n). Note that, Line-
Removal has to be used for removing H lines also.

References

[1] Aho, Hopcroft and Ullman Data Structures and Algo-
rithms, Addison-Wesley, pp. 115-117, 1983.

[2] T. Asano, T. Asano, L. Guibas, J. Hershberger and H.
Imai, “Visibility of disjoint polygons.” Algorithmica, 1
(1986), pp. 49-63.

[3] B. Chazelle “Triangulating a simple polygon in Linear
time” 1990 IEEE $1st Symp. on Foundations of Com-
puter Science, pp. 220-229.

[4] Chin, and Wang “Optimal Algorithms for the Intersec-
tion and the Minimum Distance problems Between Pla-
nar Polygons,” IEEE Trans. on Computers, vol. ¢-32,
no. 12, pp. 1203-1207, Dec. 1983.

(5] S. K. Ghosh, and D. M. Mount “An ouput sensitive algo-
rithm for computing visibility graphs” Proc. 28th IEEE
Syp. on Foundations of Computer Science, pp. 11-19,
1987.

[6] L. Guibas, J. Hershbereger, D. Leven, M. Sharir and
R. E. Tarjan “Linear time algorithms for visibility and
shortest path problems inside triangulated simple poly-
gons,” Algorithmica 2(1987) pp. 209-233.

[7] J. Hershberger, “An optimal Visibility graph Algorithm
for triangulated simple polygons,” Algorithmica 4(1989),
pp. 141-155.

(8] D. G. Kirkpatrick, M. M. Klawe, R. E. Tarjan,
“O(n log log n) polygon triangulation with simple datas-
tructures,” Proc. 6th ACM Symp. on Computational Ge-
ometry, 1990, pp. 34-43.

[9] D. T. Lee, “Proximity and reachability in the plane,”
Ph.D Thesis, Tech. Rep. ACT-12, Coordinated Science
. Lab., Univ. of IL, 1978.

[10] S. R. Middila and D. Zhou “Lower and upper bounds
for the general junction routing problem,” Tech. Rep.
ACT-90, Coordinated Science Lab., Univ. of IL, May
1988.

(11] S. R. Middila and D. Zhou “Routing in general junc-
tions,” IEEE Trans. on CAD, vol. 8, no. 11, Nov. 1989,
pp. 1174-1184.

[12] M. McKenna and G. T. Toussaint “Finding the mini-
mum vertex distance between two disjoint convex mod-
ules in linear time,” Report No. SOCS-83.6, School of
Computer Science McGill Univ., Montreal, Quebec 1983.

[13] P. Y. Pinter, “Optimal routing in rectilinear channels,”
in VLSI Systems and computations, H. T. Kung, B.
Sproull, and G. Steel, (eds.), pp. 160-177, 1981.

[14] F. P. Preparata and M. 1. Shamos Computational Ge-
ometry an Introduction, Springer- Verlag, 1985.

[15] J. T. Schwartz, “Finding the minimum distance be-
tween two convex polygons,” Inform. Process. Lett., vol.
13, no.4 and 5, pp. 168-170, 1981.

[16] E. Welzl, “Constructing the visibility graph for n line
segments in O(n?) time,” Inj. Proc. Lett., pp. 167-171.,
20(1985).

.

//2’ B
© P=(x, - Yo) (d)

Figure 1: L-, S-, T- and X-junctions.

. , WA
4% 4 %2 22 ’
115 : S

, 1
1 Z
1
VA4 |- 414
@ ()
. pa—
/| gl
~ 5 \'\ - . S 3
2 < 16
7 7
i :
/Jl“ i él
, 6 | o i
)
%
S
1Q
‘ 4:/4/
an
BZE
16
© 0]

Figure 2: Junction bottleneck identification.

