IMMOBILIZING FIGURES ON THE PLANE

LUIS MONTEJANO 1 and JORGE URRUTIA 1,2

Let S be a bounded connected open set on the plane (henceforth called plane set). A collection of points P on the boundary $\beta(S)$ are said to immobilize S if any "small" rigid movement of S causes one point in P to penetrate into S. It is known that any plane set S that is not an open disk, can be immobilized with at most four points [1]. When S is the interior of a parallelepiped, four points are needed. Immobilization problems were introduced by W. Kuperberg [2] and also appeared in [5]. Applications of immobilization problems can be found in robotics, specially in grasping problems, see [3,4]. In this paper we prove in the affirmative a conjecture of Kuperberg, namely we prove:

Theorem 1: Any plane set with smooth boundary can be immobilized with three points.

Some definitions and terminology will be needed before we can give a sketch of our proof. Consider three points $\{x_1, x_2, x_3\}$ on the boundary $\beta(S)$ of S. We now proceed to give conditions under which $\{x_1, x_2, x_3\}$ immobilize S.

For x_1, x_2, x_3 to immobilize S, the following two conditions must be satisfied:

- 1) The normals to $\beta(S)$ at x_1, x_2, x_3 must all meet at a point P; see [1]. We may assume w.l.o.g that P is the origin 0.
- 2) The three tangents to S at x_1 , x_2 , x_3 must define a (bounded) triangle with vertices y_1 , y_2 and y_3 as shown in Figure 1.

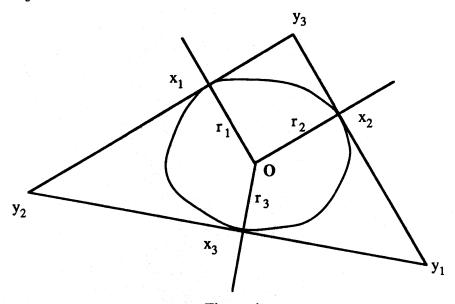


Figure 1

It is easy to see that Conditions 1 and 2 are not sufficient to guarantee that x_1 , x_2 and x_3 immobilize S. We need to give a third condition that needs to be satisfied so that we can guarantee that they immobilize S. Some additional definitions will be needed.

Let κ_i be the curvature of $\beta(S)$ at x_i , r_i be the norm of x_i , and a_i the baricentric coordinates of the origin with respect to the triangle with vertices y_1 , y_2 and y_3 , i=1,2,3.

Theorem 2. Let x_1 , x_2 and x_3 be three points in $\beta(S)$ such that 1) and 2) are satisfied. Let $s = a_1 r_1 \kappa_1 + a_2 r_2 \kappa_2 + a_3 r_3 \kappa_3$. Then if s < 1, x_1 , x_2 and x_3 immobilize S. If s > 1, then x_1 , x_2 and x_3 do not immobilize S.

Sketch of Proof. Using elementary tools in differential calculus, it is easy to prove that there is a differentiable reparametrization $\alpha(\theta)$ of $\beta(S)$ and a real differentiable function $\varphi(\theta)$ defined in a small neighborhood of 0 such that:

- i) $\alpha(0) = x_1 \text{ and } \alpha(\varphi(0)) = x_2$
- ii) $|\alpha(\theta) \alpha(\varphi(\theta))| = |x_1 x_2|$
- iii) The angle formed between the line through x_1 and x_2 and that by $\alpha(\theta)$ and $\alpha(\varphi(\theta))$ is precisely θ .

Let L_{θ} be the rigid mapping (the isometry) that maps the line segment $[x_1, x_2]$ to the segment $[\alpha(\theta), \alpha(\varphi(\theta))]$ and L^{-1}_{θ} be its inverse rigid mapping. $L^{-1}_{\theta}(\beta(S))$ can be visualized as the final position of S when we slide it over x_1 and x_2 so that the points $\alpha(\theta)$, $\alpha(\varphi(\theta))$ are mapped into x_1 and x_2 respectively (θ in a small neighborhood $(-\delta, \delta)$ around 0).

Thus if $x_3 \in L^{-1}_{\theta}$ (S), for all $\theta \in (-\delta, \delta)$, δ sufficiently small, then $x_1, x_2, x_3 do$ immobilize S. Similarly if $x_3 \notin L^{-1}_{\theta}$ (S), for all $\theta \in (-\delta, \delta)$, δ sufficiently small, then x_1 , $x_2, x_3 do$ not immobilize S.

It is easy to show that any rigid mapping can be decomposed into a rotation of the plane by an angle θ around the origin followed by a translation. Thus for every x on the plane, we may rewrite L_{θ} as follows: $L_{\theta}(x) = r_{\theta}(x) + X(\theta)$.

Thus $\alpha(\theta) = L_{\theta}(x_1) = r_{\theta}(x_1) + X(\theta)$ and $\alpha(\phi(\theta)) = L_{\theta}(x_2) = r_{\theta}(x_2) + X(\theta)$.

Taking derivatives, we get:

$$\frac{d \alpha(\theta)}{d\theta} = \frac{d r_{\theta}(x_1)}{d\theta} + \frac{d X(\theta)}{d\theta}$$
 (1)

$$\frac{d \varphi(\theta)}{d\theta} = \frac{d r_{\theta}(x_2)}{d\theta} + \frac{d X(\theta)}{d\theta}$$
 (2)

We now show that
$$\frac{d X(\theta)}{d\theta} = 0$$
.

Evaluating, we get

$$\frac{d \alpha(\theta)}{d \theta} \Big|_{0} = \frac{d r_{\theta}(x_{1})}{d \theta} \Big|_{0} + \frac{d X(\theta)}{d \theta} \Big|_{0} \quad \text{and} \quad \frac{d \phi(\theta)}{d \theta} \Big|_{0} = \frac{d r_{\theta}(x_{2})}{d \theta} \Big|_{0} + \frac{d X(\theta)}{d \theta} \Big|_{0}$$

But since by definition x_i is orthogonal to the tangent to $\beta(S)$ at x_i , we have:

$$\frac{d \alpha(\theta)}{d\theta} \begin{vmatrix} and also to & \frac{d r_{\theta}(x_2)}{d\theta} \end{vmatrix} 0$$
 are orthogonal to x_i .

We have by calculating the inner product of (1) and (2) with x_1 and x_2 that

$$\begin{array}{c|c} d X(\theta) & =0. \\ \hline d\theta & 0 \end{array}$$

In general the curvature $\kappa(x)$ of $L_{\theta}(x)$ at a point x is given by: $-\kappa(x) |x|^3 = \langle x(\theta), x \rangle + |x|^2$. Then:

$$-\kappa(x_1) r_1^3 = < x''(0), x_1 > + r_1^2,$$

$$-\kappa(x_2) r_2^3 = <\kappa''(0), x_2> + r_2^2,$$
 (3)

$$-\kappa(x_3) r_3^3 = < \kappa''(0), x_3 > + r_3^2.$$

Note that since $L_{\theta}(x_1) = \alpha(\theta)$ and $L_{\theta}(x_2) = \alpha(\phi(\theta))$ then $\kappa(x_i) = \kappa_i$, i = 1,2.

Let b_i , i=1,2,3 be such that $b_1 + b_2 + b_3 = 1$ and $b_1 x_1 + b_2 x_2 + b_3 x_3 = 0$, i.e. the baricentric coordinates of the origin with respect to the triangle determined by x_1 , x_2 and x_3 . Using the coefficients b_i and (3) we get (multiplying by the corresponding b_i and adding):

$$-(b_1 r_1^2 \kappa(x_1) r_1 + b_2 r_2^2 \kappa(x_2) r_2 + b_3 r_3^2 \kappa(x_3) r_3) = \langle X(0), 0 \rangle - (b_1 r_1^2 + b_2 r_2^2 + b_3 r_3^2).$$

Let
$$a_i = \frac{b_i r_i^2}{b_1 r_1^2 + b_2 r_2^2 + b_3 r_3^2}$$
, $i=1,2,3$.

It can be proved that the a_i 's are precisely the baricentric coordinates of the origin with respect to the triangle with vertices y_1 , y_2 and y_3 .

Then $a_1 r_1 \kappa(x_1) + a_2 r_2 \kappa(x_2) + a_3 r_3 \kappa(x_3) = 1$. Suppose now that $a_1 r_1 \kappa(x_1) + a_2 r_2 \kappa(x_2) + a_3 r_3 \kappa(x_3) = 1 < a_1 r_1 \kappa_1 + a_2 r_2 \kappa_2 + a_3 r_3 \kappa_3$, then $\kappa(x_3) < \kappa_3$ and we can slide S over x_1 and x_2 leaving x_3 outside of S. Then x_1, x_2 and x_3 do not immobilize S. Conversely if s < 1, then $\kappa(x_3) > \kappa$, and $x_3 \in L^{-1}_{\theta}$ (S). In this case they do immobilize S. This concludes the proof of Theorem 2.

We proceed now to prove our main theorem.

Proof of Theorem 1. Consider the largest (open disk) D contained in S. Let C be the circle defined by the boundary of D. If C intersects $\beta(S)$ in three points not contained in a half circle of C, then we can immobilize S with three points [1]. Suppose then that C meets $\beta(S)$ at exactly two points x_a and x_b . Clearly the line segment joining x_a to x_b is

a diameter of C. Suppose w.l.o.g that the radius of C is 1.

If $\kappa_a + \kappa_b < 2$, then it is easy to prove using Theorem 2 that there is a point z in $\beta(S)$ and two points x and y sufficiently close to κ_a and κ_b respectively which immobilize S. The critical case is when $\kappa_a = \kappa_b = 1$. It is then harder, but still possible to prove, again using Theorem 2, that κ_a and two points x and y sufficiently close to κ_b , as shown in Figure 2, immobilize S.

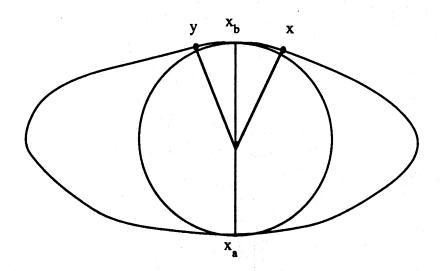


Figure 2

References

- [1] J. Czyzowicz, I. Stojmenovic and J. Urrutia, "Immobilizing a Shape". RR 90/11-18, Département d'informatique, Université du Québec à Hull.
- [2] W. Kuperberg, "DIMACS Workshop on Polytopes", Rutgers University, Jan. 1990.
- [3] X. Markenscoff, L. Ni and Ch. H. Papadimitriou, "Optimal Grip of a Polygon" Int. J. Robotics Research, 8, 2, 1989, 17-29.
- [4] X. Markenscoff, L. Ni and Ch. H. Papadimitriou, "The Geometry of Grasping", Int. J. Robotics Research, 9, 1, 1990, 61-74.
- [5] J. O'Rourke, "Computational Geometry Column 9", SIGACT News, 21, 1, 1990, 18-20, #74.

¹⁾Instituto de Matemáticas, Universidad Nacional Autónoma de México.

²⁾ Department of Computer Science, University of Ottawa, Canada