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IMMOBILIZING FIGURES
ON THE PLANE

LUIS MONTEJANO ! and JORGE URRUTIA 12

Let S be a bounded connected open set on the plane (henceforth called plane set). A
collection of points P on the boundary P(S) are said to immobilize S if any "small" rigid
movement of S causes one pointin P to penetrate into S. It is known that any plane set
S that is not an open disk, can be immobilized with at most four points [1]. When S is the
interior of a parallelepiped, four points are needed. Immobilization problems were
introduced by W. Kuperberg [2] and also appeared in [S]. Applications of immobilization
problems can be found in robotics, specially in grasping problems, see [3,4]. In this paper

we prove in the affirmative a conjecture of Kuperberg, namely we prove:
Theorem 1: Any plane set with smooth boundary can be immobilized with three points.

Some definitions and terminology will be needed before we can give a sketch of our proof.
Consider three points {x,, X,,X,} on the boundary B(S) of S. We now proceed to give
conditions under which {xl, Xy x3] immobilize S.

For x,, X,, X, to immobilize S, the following two conditions must be satisfied:

1) The normals to B(S) at X;» Xp, X5 MUSE all meet at a point P; see [1]. We may assume
w.lo.g that P is the origin 0.

2) The three tangentsto S at X, X, X, must define a (bounded) triangle with vertices
YpY, andy, as shown in Figure 1.
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It is easy to see that Conditions 1 and 2 are not sufficient to guarantee that x;, x and x3
immobilize S. We need to give a third condition that needs to be satisfied so that we can
guarantee that they immobilize S. Some additional definitions will be needed.

Let x; be the curvature of B(S) atxj, r; be the norm of xj, and a; the baricentric
coordinates of the origin with respect to the triangle with vertices y;, y, and ys3, i=1,2,3.

Theorem 2. Let x;, x; andx3 be three points in B(S) such that 1) and 2) are satisfied.
Let s=a;r K; +asrp X3 + a3z k3. Then if s<1, Xxq, X7 and x3 immobilize S. If s>1, then
X1, X2 and x3 do not immobilize S.

Sketch of Proof. Using elementary tools in differential calculus, it is easy to prove that

there is a differentiable reparametrization o(8) of B(S) and a real differentiable function

¢(0) defined in a small neighborhood of 0 such that:

i) a(0) = x; and a(p(0)) = x; ’

ii) le(8) - (BN =1 x; - x1l

iii)  The angle formed between the line through x; and x; and that by a(6) and
o(¢(0)) is precisely 6.

Let Lg be the rigid mapping (the isometry) that maps the line segment [x;, xp] to the
segment [0t(0), a(9(6))] and L-1g be its inverse rigid mapping. L-1g(B(S)) can be
visualized as the final position of S when we slide it over x; and x; so that the points
o(0), o(p(0)) are mapped into x; and x; respectively (0 in a small neighborhood
(-8, 8) around 0).

Thus if x3 € L-1g (S), for all O € (-8, §), & sufficiently small, then x;, x3,x3 do
immobilize S. Similarly if x3 ¢ L-1g(S), forall 6 € (-3, 8), & sufficiently small, then x,
x2‘, x3 do not immobilize S.

It is easy to show that any rigid mapping can be decomposed into a rotation of the plane
by an angle 6 around the origin followed by a translation. Thus for every x on the plane,
we may rewrite Lg as follows: Lg(x) =rg(x) + X(0).

Thus o(0) = Lg(x1) =1g(x1) +X(0) and a(e(B)) = Lo(x2) =r6(x2) + X(6).

Taking derivatives, we get:

da®) _ dnx) _ dXEO) | (1)
do do do
do® _ drxp) | dX@) @

de do ()
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We now show that d X(0) =0.
de

Evaluating, we get

da@®)| _ dre) g_)_(@‘ and d@®) _ dr(xp) _d__)@’
@0 do [0 do |0 o lo a0 lo a0 Jo

But since by definition x; is orthogonal to the tangent to B(S) at x;, we have:

do(®)] andalsoto dre(x2) are orthogonal to x;.
de |0 do |0
We have by calculating the inner product of (1) and (2) with x; and x; that
d X(0)] =0.
de |0

In general the curvature k(x) of Lo(x) at a point x is given by: -x(x) ix3 =< x(0),
X > + IxI 2, Then:
-x(x1) r13= < x7(0) , x; > + 112,
k(X)) r3=<x'(0), x2>+12, ... 3)
-k(x3) r33= < x"(0) , x3> + 132,

Note that since Lg(x;) =o(0) and Lg(x3) = a(p(0)) then x(x;) = x;, i = 1,2.

Let b, i=1,2,3 besuchthat b;+ by + b3 =1 and by x;+ by xo+ b3 x3= 0, ie. the
baricentric coordinates of the origin with respect to the triangle determined by x;, X2 and x3.
Using the coefficients b; and (3) we get (multiplying by the corresponding b; and adding):

-(by 1 2K(x1)ry + bg r2K(x9)ro+ bs r32K(x3)rs) = <X(0), 0> - (b 12+ by 12+ b3 132).
Let a; = b2, |

b1 r12+ bz l'22+ b3 1'32 , i=1,2,3.

It can be proved that the a;s are precisely the baricentric coordinates of the origin with
respect to the triangle with vertices yj, y7 and ys.

Then a; r; x(X;) + a3 rp K(x3) + a3 r3 X(x3) = 1. Suppose now that a; r x(x;) +ax
K(xq) + a3 r3 X(x3) =1 < aj 1y X; + a3 12 X3 + a3 13 X3, then K(x3) < k3 and we can slide S
over x; and x, leaving x3 outside of S. Then x;, x; andx3 do not immobilize S.
Conversely if s < 1, then x(x3) > x, and x3 € L-1g (S). In this case they do immobilize S.
This concludes the pfoof of Theorem 2.

We proceed now to prove our main theorem.

Proof of Theorem 1. Consider the largest (open disk) D contained in S. Let C be
the circle defined by the boundary of D. If C intersects B(S) in three points not contained
in a half circle of C, then we can immobilize S with three points [1]. Suppose then that C
meets B(S) at exactly two points x, and xp. Clearly the line segment joining x, to x; is
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a diameter of C. Suppose w.l.o.g that the radius of C is 1.

If x,+ X, < 2, then it is easy to prove using Theorem 2 that there is a point z in B(S)
and two points x and y sufficiently close to x, and x, respectively which immobilize S.
The critical case is when X, = X, = 1. Itis then harder, but still possible to prove, again
using Theorem 2, that x, and two points x and y sufficiently close to xp, as shown in
Figure 2, immobilize S.

y % x
X
a
Figure 2
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