78

AN EFFICIENT ALGORITHM FOR THE MAXIMUM EMPTY RECTANGLE
PROBLEM IN THREE DIMENSIONS

(Extended Abstract)

Amitava Datta and Kamala Krithivasan
Department of Computer Science and Engineering
Indian Institute of Technology, Madras 600 036, INDIA.
email : kamala@shiva.ernet.in

1. INTRODUCTION

The Maximum Empty Rectangle (MER) problem is the following. Given a bounding
isothetic rectangle BR and a point set P (|P|=n) inside it, we have to find the
maximum area/perimeter isothetic rectangle R such that R is completely contained in
BR and it does not contain any point from the set P. This problem has been studied
extensively in two dimensions [1,2,3]. The best algorithm runs in O(nlogzn) time for
the area problem and in O(nlogn) time for the perimeter problem using O(n) space
[1]. In this paper, we present an efficient algorithm for the MER problem in three
dimensions. It enumerates all three dimensional empty rectangles and finds the
maximum one. The time and space complexities of our algorithm are 0(714) and
O(nzlogn) in the worst case. We show that the number of empty rectangles in three
dimensions is 0(n4) and any algorithm which enumerates all of them cannot perform
better. No previous algorithm was known for this problem. The rest of this abstract is
organised as follows. In section 2 we explain some definitions. We present the algo-
rithm in section 3.

2. DEFINITIONS

The point set consists of n points {py,pp,---Pp}. The three coordinates of point p; are
represented by p;.x, p;;y and p;.z. The bounding rectangle for the set P is denoted as
BR. The two extreme sides for the x direction are written as BR.x.top and
BR.x.bottom. Similarly, we define other two pairs of extreme sides in the directions y
and z. A rectangle R is called restricted if all the six planes of R pass through either a
point from the set P or are aligned with one of the extreme planes of BR. A restricted
rectangle (RR) should not contain any point from the set P. We call the maximum

79
empty rectangle in three dimensions as the Maximum Empty Hyper Rectangle
(MEHR). It is easy to see that the MEHR is a member of the set of RRs.

3. THE ALGORITHM

We solve this problem by enumerating all possible RRs.
Lemma 3.1 There may be 0(n4) RRs in the worst case.
Proof. Fixing two pairs of points on two pairs of opposite planes completely specifies
a RR. There may be O(n4) such points. Q.E.D.
We sweep a plane parallel to the x-y plane, i.e., perpendicular to the z axis. The sweep
starts at the top z plane of BR,i.e., at BR.z.top and successively other points with
decreasing z coordinates are reached. We maintain a data structure such that when a
point Pj is reached during the sweep, we can report all RRs with pj as the bottom
support in the z direction. The top support in the z direction for such RRs will be a
point p; such that Pj-2>PjZ- There will be RRs with BR.z.top as the top support and
similarly RRs with BR.z.bottom as the bottom support in the z direction. These RRs
are also enumerated by our data structures but we will omit the details of enumera-
tion of such RRs in this version. Our basic algorithm is the following :
forj:=1tondo
begin

Compute the volumes of all RRs with pjas bottom support;

Update the variables containing the MEHR if necessary;

Update the data structure.

end.

At the end of this computation, we get the MEHR. Our data structure is a combina-
tion of segment and interval trees and similar to the one used for direct dominance
problem in [4]. For each point p;, we define four quadrants in the following way. We
draw lines parallel to the x and y axis. The intervals corresponding to these lines will
be [BR.x.top, BR.x.bottom] and [BR.y.top, Br.y.bottom]. We call the four quadrants
as the NE,SE,SW and NW quadrants according to the four compass directions. We
call a RR which has p; as the top support as RR(p;). The points which can be the
supports of the side planes (i.e., supports in the x and y direction) for a RR(p;) form a
three dimensional staircase structure in each quadrant. The sweep plane intersects
these three dimensional structures at each event point Pj (pj.z> p;-z) and forms four
two dimensional staircases (Figure 1). The points which bound these two dimensional
staircases are directly dominated by p; in three dimensions. For details, see [4]. We
associate four staircases with each point p;. These are stored in arrays denoted by

80

NW;, SW;, NE; and SE; respectively. In addition to the four arrays mentioned above,
we store all the staircases for all the points in another data structure. This is necessary
to find quickly whether a point Pj falls within any of the staircases of a particular point
p;- If Pj does not fall within any of the staircases of p;, there cannot be any RR with p;
as top and pj as bottom supports in the z direction. For this second data structure, we
use a combination of segment and interval trees and store the staircases as a collec-
tion of rectangles as in [4]. A staircase is represented by as many rectangles as it has
treads (Figure 2). Each rectangle has one end point at the point p; (we call it the
distinguished end point) and the opposite corner at one of the treads. So, each rec-
tangle is uniquely identified with a point p; (the distinguished end point). They inter-
vals of these rectangles are stored in a segment tree and the corresponding x intervals
are stored as interval trees which are associated with each internal node of the
segment tree. Again we refer to [4] for details. Now, to find out in which rectangle Pj
falls, we have to do a two dimensional range searching which is decomposed into two
one dimensional searches in our data structure. We do this search for two purposes.
Firstly, to know in which staircases Pj lies and hence can form RRs as the bottom
support in the z direction. Secondly, we want to update our two data structures, i.e.,
the arrays which store the staircases and the segment-interval tree data structure. This
is necessary because, after crossing the point Py the shape of the staircases change.
First we describe the reporting of RRs.

3.1. Reporting of Restricted Rectangles.

Suppose, during the search we find that Pj lies within a rectangle R of which the
distinguished corner is p;. We assume without loss of generality that Ry is a part of
the SW staircase of p;. We assume that the arrays SW;, NW;, NE; and SE; (which
store the four staircases of p;) have the highest y coordinate point as the first entry
and the y coordinate decreases in the succeeding entries. We will drop the subscript of
the arrays when it is understood that they are associated with p;- At the sweep plane,
we get a rectangular cross section (RCS) of the RRs of which p; and Pj form the top
and bottom supports respectively. This RCS has four supports from the points of the
four staircases. There are sixteen different types of possible RCSs depending on the
supports. In this version we consider only one type.

(1) Left and bottom supports from SW, right and top support from NE staircase.

We describe the method for enumerating the type 1 RCSs. The others can be found in

using the same method.

3.1.1. Enumeration of type 1 RCS.

81

It has two supports in the SW and two in the NE staircases. We first note the follow-
ing facts (Figure 3).

Observation 1. The left and bottom supports should be SW[j] and SW[j+1] i.e., two
consecutive elements of the SW array. Similarly, the top and right supports should be
NE[k] and NE[k+1].

Observation 2. SW[j].x<pj.x and SW[j+1].y<pj.y.

Observation 3. Suppose, SW{(j] and SW[j+1] are the first pair (from the bottom of the
SW staircase) which form a RCS with the first pair NE[k] and NE[k+1] (from the top of
the NE staircase). The pair SW[j-1] and SW[j] cannot form a RCS with any pair
NE[i],NE[i+1] such that i<k.

Observation 3 suggests that we can monotonically go up the SW staircase and come
down the NE staircase while reporting the RCSs and hence RRs. The first pair
SW[j],SWI[j+1] can be found in O(logn) time by a binary search in the SW array. After
that no extra time is spent other than enumeration of RRs. So, the enumeration of all
RRs with pj as the bottom support can be done in O(nlogn+K) time, where K is the
number of RRs with pj as the bottom support. Similar monotonicity conditions can be
derived for other classes of RCSs. All RRs with points from the set P as top and
bottom supports in the z direction can be enumerated in

O(nzlogn +K) time and hence in 0(n4) time in the worst case during the whole plane
SWeep process.

3.2. Modification of data structures. When a point Pj falls within the staircase struc-
ture of a point p; (p;-z< pj.z), the staircases have to be modified. We again assume for
simplicity tha‘t Pj falls within the SW staircase of the point p;. We delete from the
segment-interval tree structure all the rectangles of the SW staircase which has the
point Pj inside them. Two new rectangles are inserted. Suppose, R; is the rectangle
which contains Pj inside it and its left side (R;.left) has the minimum x coordinate
among all such rectangles. We insert a rectangle Ry such that Ry.left is flush with
 Rjleft and Ry.bottom passes through Pj- One corner of Ry is the point p;. Similarly,
Rj is the rectangle containing Pj and Rj.bottom has the minimum y coordinate among
all such rectangles. We insert a rectangle R, such that R, .left passes through Pj and
R,,-bottom is flush with Rj.bottom (Figure 4). Similar modifications in the array SW
can be done easily. It is clear that each rectangle is inserted in the segment-interval
tree structure at most once and deleted once. Each insertion and deletion takes
O(Iogzn) time. The number of such rectangles is the number of direct dominance
pairs in the set P [4] which is 0(n2). So the overall time requirement for modification
of data structures is O(nzlogzn). Since, at a time at most O(n2) rectangles exist in the
segment-interval tree structure, the worst case space requirement is O(nzlogn).

82

Theorem 1. The MEHR problem can be solvedin O(nzlogzn +K)time,i.e. 0(;14) time in the worst case
using O(nzlogn) space.

- REFERENCES

[1] A.Aggarwal and S.Suri, "Fast Algorithms for Computing the Largest Empty

Rectangle", Proc. of the Third Annual ACM Symposium on Computational Geomelry,

(1987), pp.278-290. '

[2] B.M.Chazelle, R.L.Drysdale and D.T.Lee, "Computing the Largest Empty Rec-
tangle", SIAM J. Computing, 15, No.1 (1986), pp.300-315.

[3] A.Datta, "Efficient Algorithms for the Largest Rectangle Problem", Information

Sciences, to appear.

[4] R.H.Guting, O.Nurmi and T.Ottmann, "Fast Algorithms for Direct Enclosures

and Direct Dominances", Journal of Algorithms, 10,(1989),pp.170-186.

83

Nw NE

1.

i

it ST SRR

| hf

SE
Sw

| I S

SW

Figure 1. The intersection of
the sweep plane with the three
dimensional staircases. The four
staircases for the point p; are
shown here. Py-2<pj.z.

Figure 2. The SW staircase is
represented as a collection of
rectangles. One corner of each
rectangle is the point P;i-

-.‘

Nw ! - NE

"
o

SW

: - v

—-——-—‘———.—l—— — ——— w— =y o~

1’4'

|

e e ol e .
l
|
l
|
I

Figure 3. Formation of RCSs in
the sweep plane. The left and
bottom supperts are from the SW
and the right and top supports
are from the NE staircase. All
the points are projected on the

sweep plane containing Py-

Figure 4. The modification of
the SW staircase due to the
point p:. Two new rectangles are
introd&ked. All rectangles in
the SW staircase containing Py
are removed from the segment=
interval tree structure.

