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Finding the closest and visible sites for a line in the presence of barriers?
Cao An Wang ?
Y.H.Tsin3

Abstract: Let S be a set of n sites and L be a set of m disjoint line segments regarded as barriers.
Let also | be a straight line outside of the convex hull of L U S. We present an algorithm to find the
site for each point of ! (if any) which is visible and closest to this point among the sites of 5. The
algorithm takes O((mn + n?) log (mn 4 n?)) time and O(mn + n?) space.

1 Introduction

Visibility problems from a single source (a point or an edge) have been extensively studied in the
past {1,2,3,4,5]. A modified version of the above visibility problem is to consider multiple sources.
In this paper, we consider the visibility of a straight line from a set of n sites in the presence of m
obstacles (line segments). It is easy to see that there may exist mn distinct intervals in ! such that
each interval is visible from a subset of S and the adjacent intervals are visible from different subsets.
Moreover, one may wish to identify the site closest to the corresponding interval among its visible
sites. A brute-force method to find the closest and visible site for each interval of the line is as follows.
Construct all 2mn + 1"”;11 lines determined by the 2m endpoints and n sites. The intersections of
these line and the given line ! divide ! into line segments. For each line segment, test the visibility
and compute the distance against each site. There may be 2mn + @—:';—l)- line segments on ! and the
visibility test for each line segment may take mn time. Thus, this method will take O((mn)? + mn?)
time in the worst case. In this paper, we shall present a faster algorithm for this problem. To do so,
we solve two subproblems before solve the desired problem: (1) ef fective ray identiﬁcation problem:
Finding these rays, each of them emits at a site and passes through an endpoint of an obstacle, which
determine the intervals of . (2) off-line minimal problem: Finding the minimals of a sorted integer

list with insertion and deletion operations.

2 Determining the effective rays w.r.t. the visibility of |

Let L be a set of m disjoint line segments, and let V be the endpoint set of L. Let S be a set of n
sites. Let [ be a straight line which does not intersect the convex hull CH(SUL). Then, S and V will

determine 2mn rays, each of them emits at a site of S and passes through an element of V.
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Definition: The polar upper envelope of L w.r.t. s¢S and ! consists of the su bsegments of elements
of L which are polar visible and the segments of rays emitting at s each of which connects two such
subsegments or connecting a subsegment to s.

Lemma 2.1: Ray s is eflective if entire 37 lies on the polar upper envelope of L w.r.t. s and .

By Lemma 2.1, we shall present an algorithm to find the polar upper envelope and then to identify
the cffective rays. To do so, we convert the polar upper envelope problemn to an orthogonal envelope
problem, then find the orthogonal upper envelope using a SET-UNION algorithm [6]. Clearly, the
effective rays are determined by s and the endpoints of L corresponding to the endpoints of the disjoint
segments of the orthogonal upper envelope.

The conversion is briefly described as follows. Let straight line !’ pass through s and be parallel
to I with L above [. Let ray 7 clockwisely sweep the lower halfplane of I’ at center s and starting
at the right half of I'. The intersections of 7 and the clements of L determine a sequence L' of line
segments parallel to I'. Where the relative y and z coordinates of line segments /; and [; of L’ are
determined as follows: Y (L;)<Y (I;) if r crosses I; before I;, X(4)<X(;) if r touches the endpoint of
l; before that of ;. (Refer to Fig.2.1, and (1] for details.) Clearly, the conversion takes O(mn log m)
time by a sweep-line method.

To find the orthogonal upper envelope of L', we represent a line segment ; of L’ by a triple (i, 7, k),
where i is the y-coordinate of [;, j and k is the z-coordinates of its endpoints. The elements of L’ are
in ascending order so that /; (denoted by (¢, j, k)) is ahead of I; (denoted by (z,y, 2))ifi<zori=z
and j < y, Let S; denote the sequence of triples. Initially, 2m integers on the z-axis are represented as
a forest, where each integer is a tree with one node, the father of each node is empty. Let r(p) denote
the root of a tree with leaf p. For each root r, two pieces of information are attached: R(7) denote the
rightmost leaf of the tree, and count(r) denotes the number of nodes in the tree. Initially, 12( r) and
count(r) are set to 1. S, is put on a stack such that the first triple of S; is on the top of the stack.
MergeTrees(r(z),7(y)) is the UNION operation and FindRoot(x) is the path-compression in [6].

Algorithm FindSmallest(S,, F)
WHILE S,£0 DO
(4,4,k) « POP(Sy);
FOR p=3 TO k DO
IF father(p) = @ THEN
IF p = j THEN
r(p) « j; father(p) « j;
count(r(p)) « 1; F — PUSH (i,p);
ELSE (*p#j ¥)
father(p) « r(j); count(r(p)) — count(r(p)) + 1;
F «— PUSI (ip); R(r(j)) — p;
ELSE (* father(p) # 0 *)
7(p) — FindRoot(p); MergeTrees(r(j),r(p)); p — R(r(p));
ENDFOR
ENDWIIILE
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Lemma 2.2: Algorithm FindSmallest finds the orthogonal upper envelope of L’ in O(m:) time.
By scanning the orthogonal upper envelope, we can find the effective rays emitting at s in O(m)
time. By applying the above method to each site in .5, we obtain all the effective rays in O(mn log

m) time. Let T denote the intersection points of these rays and [.

3 Finding minimals in a sorted list with updatings

Let N be a sublist of n integers sorted in ascending order, where the integers range from 1 to order n.
Let S be a sequence of n operations. That is, § = U; Uy F;...U, F,,, where update operation l/; for
1 < 1 < n is either a deletion of an element of N;_; or an insertion of an integer j for 1 < j < order
n into the proper place of N;_;, which is the list of the sorted integers after operation U;_;. Find
operation F; is to print the smallest clement in N;. We shall solve this problem by FindSmallest.

Let S; denote a sequence of triples (2, j, k), where j and k are a pair of timestamps such that in
time j, integer i is inserted into Nj_; and in time k, i is deleted from Ni_,. We sort these triples in
lexicographic ordering. That is, for any two given pairs (4, j, k) and (z,y, 2), (,7,k) is ahead (z,y,2)
in the sequence S; ifl i < z or i = z and y < j. By bucket sort, the following lemma is true.

Lemma 3.1: S can be found from S in O(n) time and space.

Now, we can apply FindSmallest(S,, F) to solve the problem in O(.n) time..

4 Finding the closest and visible sites of !

Definition: Let E’ be a sequence of edges along ! which are determined by the intersections of ! and
the perpendicular bisectors of n sites. Let CL; be a list of n sites associated with the ¢-th edge e; of
l. CL; is said to be the closest site list, if the first site in the list is the one closest to e; (disregard
the obstacles), and the second site in the list will be the one closest to e; if the first site is not taken
into account (for example, it is deleted due to the invisibility from e;). In general, the k-th site for
1 < K < n will be the one closest to e; if the first k — 1 sites is not taken into account.

Let B denote the intersections of ! and the perpendicular bisectors. We sort the intersections of
B and T along | and denote the sequence by Q. Clearly, Q divides [ into a sequence E of edges
(IIE|| = O(mn +n?)). Let e; and e;41 be such two adjacent edges. Let V B; and V B,y be their visible
site lists, and CL; and CL;4, be their closest site lists. Then, the closest and visible site with respect
to e; (respectively, to e;;) is the first site in C'L; which also appears in V B;.

Lemma 4.1: Let p be the shared point of e; and e;41. If p belongs to an effective ray sit, then
the difference of V B; and V B;y; is s. If p belongs to a bisector b, ., then then the diflerence of C/;
and CL;4, is to swap the positions of s and ¢.

Now, we shall solve our problem using FindSmallest(S;, F'). Let ey be one of the extreme edges

of E. We shall find the visible site list and the closest site list of e, by a brute-force method, That
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is, to sort the distances between an interior point z of I and all seS to find the closest site list, and to
test the intersections of line segment Z3 and all elements of L for all seS to determine the visible site
list. (This can be done in O(mn + nlogn) time.)

Starting at ep and based on the closest site list and the visible site list of eg, we traverse { by
scanning @) to construct a sequence of triples, where triple ((3,t),3, k) represents a site s; appears in
the i-th rank of C'Ly’s as well as V B,’s between j-th to k-th edges of l. Initially, we associate with each
visible site of eg a triple with the rank of the site in CL, and the index of the site as the first item,
and 1 as the second item, and empty as the third item (e-g., ((3,1),1,0)). If an encountered point of
belongs to T' and the site emitting the effective ray is 3p, then we create a new triple ((d,p),2,0) if s,
is a visible site of rank d w.r.t. the new edge, or we fill the third term of the old triple ((d,p), 1,2) if
3p is invisible to the new edge. If an encountered point of Q belongs to B and the two associated sites
are s, and 34, then we fill the third terms of the old triples ((d,p), 1,2) and ((e,9),1,2) and create two
new triples ((c,p),2,0) and ((d,q),2,0). Continue this scan until all elements of Q are exhausted. Sort
the resulting triples lexicographicly w.r.t. the first integer of the first term and the second term and
the resulting sequence of the triples is denoted by S;, then apply FindSmallest(S;, F) to S;. The
results in I is the closest and visible site (if any) for the corresponding edge of [. |

Theorem 4.1: The closest and visible sites of / can be found in O(mn + n?) log (mn + 2?) time
and O(mn + n?) space.
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