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Abstract

Given a source of X-rays emitting in a ‘conic’ fash-
ion, one would like to construct a safety barrage that
could block any accidental high emittance of radia-
tion. The barrage consists of panels coated with lead
to be placed within the cone of emission. Due to
space constraint these panels can be put only along
specific lines. If one wishes to minimize the total sur-
face of the panels, then its argued that one panel is
not always the best solution.

We formalize the problem as follows: let EZ be the
Euclidean plane, O its origin. Let C be a cone of E?
with apex O, and bounding rays » and r'. A set of
segments S subtend C if the endpoints of the segments
of S lie on r and r’. Let L be a line intersecting r
and 7' such that O and S belong to the bounded
subset of E? determined by L, r, and 7'. Let 4 be
the unbounded subset of E? also determined by L, 7,
and 7'. A minimum length-cover of O given C and
S, is a set of sub-segments of S with minimum length
which hides O from A.

We exhibit an optimal ©(nlogn) algorithm for
finding such a minimum cover when the edges of E are
non-intersecting, and an Q(mlogm+ mnlogn) algo-
rithm when the number of intersection points among
the edges of S is m.

1 Definitions

Let hg and h; be two closed half-planes whose re-
spective bounding lines l; and [; intersect in O. The
boundary of the intersection region I of ho and hy
consists of two closed rays 7y and 7, such that g
lies on lg and 7r; lies on l{, and ro and r; share the
common endpoint O. With respect to O, the ray of
{70, r1} bounding I, in the clockwise direction from I
shall be called the right bounding ray. The other ray

shall be called the left bounding ray. Without loss of

generality, we shall assume that 7o is the left ray and

r; the right ray. We shall refer to the region I as the
cone K = (rg,7) determined by 7o and 7. In gen-
eral, any two rays sharing the origin as their common
endpoint and not contained in a common line define
a unique cone.

Givenacone C - (7, 7'}, the angle of ' is defined to
be the angle ZrO7', formed by », O, and r'. Observe
that this angle must always be less than x. The apez
of any cone is the origin O. Given two cones C and
", if C' C C then C' shall be said to be a sub-cone
of C, Two cones C' and C’ will be considered disjoint
if the apex O is the only point that belongs to both
cones, contiguous if they intersect in a single ray, and
overlapping otherwise.

Let C be a cone in E? with apex O and bounding
rays 7 and 7’. The bisector of the cone C' is assumed
to lie on the positive z-axis; all other cases are treated
in a similar manner with a minor re-paramecterization.
Let C' be the symmectric cone of € with respeet to
O. Let  be the set of points between € and €' with
positive y-coordinate, Q' the set of points between (7
and €’ with negative y-coordinate.

Let E be a set of edges subtending (7. Given an
edge e of E, a continuous interval of ¢ is called a seg-
ment of e. Let e and ¢’ be two subtending edges over
cone C. If the segment of ¢ sublending an arbitrary
sub-cone C' of C, is shorter than the corresponding
segment of ¢', then ¢ dominates ¢'. If none of the
edges dominates the other, they are said to be in-
comparable. In the latter case, the minimum cover
determined by thesc two edges is composed of two
segments, each of which belongs to one of the edges.
The ray separating the two segments is called the
splitting ray of e and ¢,



2 The non-intersecting case

2.1  Lincar Upper Bound

Let €' be a cone with two subtending edges e and &’
with e dominating ¢’. What happens if we ‘expand’
the cone and the edges ? Is the relationship between
e and €' preserved ?

Lemma 2.1 Let C' be a cone divided into three con-
tiguous sub-cones (', Cpr and Cg, termed left, mid-
dle and right sub-cones. Let e; and e, be two sub-
tending edges of C. Denote by e; y the segment of
edge e; subtending sub-cone Cj. If e; »y dominates
€M, i # 3, then either e; 1, dominates ej 1, or e; r
dominates e; g.

PROOF OQutline of the proof: We express the length
of e; 3 in terms of ¢; y, where J = L,orR; the choice
of J depends on the sign of the slopes of e, and e,
and the location of the intersection point of their un-
derlying lines in any of the two quadrants Q or Q'.
For instance, if both edges are positively sloped and
the intersection point is in @', and we assume that
¢1,p dominates ea pr, then J = R.

Let L(eip) be the length of e; p. We obtain the
following relation :

1/(‘5i,M ) o W,‘.L((:‘,"])

Where W; > 0. By hypothesis e; »s dominates
ej M, thus L(e;ar) < L(ejm). Then it is sufficient
to proof that W; > W;. Which is straightforward to
establish. 0

If both e; as and e; ; are dominant, we say that
ei, M is left extensible, similarly if e; pr and e; p are
both dominant, e; s is right eztensible.

If we know that e; ;, and e; g are dominant over
their respective sub-cones, what can we say about
€M ?

Define the Hullof two cones to be the smallest cone
containing them.

Lemma 2.2 Let ('; and €y be two disjoint cones,
Il their hull. Let e and ca lwo sublending edges of
H, such that e;; dominates es;, 1 = 1,2, then ¢;
dominates ey.

PROOF The proof is by contradiction. It assumes
that e, and e, are incomparable over H, and uses the
previous lemma to obtain a contradiction by noting
that if the segment of €3 over H \ (Cy U C?) is domi-
nant, then it would be either left or right extensible,
contradicting the dominance of ¢;,5, J = L, R. |
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Theorem 2.3 (liven a cone C' and a set of n non-
intersecting sublending edges, the number of segments
moany minimumn cover, is no more than n.

PROOF By contradiction. Assume that there ex-
ists a minimum cone-segment cover solution M with
m segments, m > n. By the pigeon-hole principle,
there exists at least two disjoint dominant segments
over cones C;, C that belong to the same edge e;.
Let €;,4 be a minimal segment between e; ; and e; x.
Since both segments e; ; and e; x are dominant, the
segment of e; subtending hull(C;, C;) is also domi-
nant by lemma 2.2, contradicting the fact that e; 4
is a dominant segment. Hence each subtending edge
can contribute with at most one dominant segment.
This fact establishes the result. ]

This upper bound is tight as established by theo-
rem 2.6.

2.2  Outline of the Algorithm

The algorithin sorts the set E closest to furthest with
respect to the origin. Next, the set F is divided into
two non-intersecting subsets E_ and E,, where E_
contains all negatively sloped edges, and E all pos-
itively sloped ones. Two distinct minimum-covers,
M_ and M,, are constructed in a symmetric way,
one with E_ as the set of subtending edges, the other
with E;. The minimum-cover induced by F is con-
structed by means of a simple merge-like technique,
where segments of M_ and M, that cover a common
area of the cone are compared against each other; the
outcome of the comparison being that either one of
the two segments is dominant, in which case the other
one is discarded, or that they are incomparable, in
which case each of the two segments contributes with
one subsegment to the minimum cover M. This pro-
cess is performed in one sweep with no backtracking.

Remains to show how to construct M_ and M,.
Since the construction is symmetric, we will outline
the construction of M, .

The first step removes all the edges of E, whose
underlying line intersects with the underlying line of
ey in Q’', where e; is the closest edge of E, to O. The
rcason being that thosc cdges are dominated by e;.
This can be seen by using triangular inequalities in a
straightforward manner.

Let B = {e},...,e;}, be the ordered set of re-
maining edges of F,. The second step constructs
M as follows : starting with e} and e}, it computes
their splitting ray p; . If p; ; falls to the left of C, e}
is removed, if it falls to the right of C, e} is removed,
otherwise the segment of e} to the right of p; ; and
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the segment of e to the left of p; » are inserted in
M, . The same process is repeated with e and ej.
If e} is removed, we move on to e}, if e} is removed,
we move back to e}, otherwise, the segment of e, is
replaced by a two segments, one from ej , the other
from ej. At the end of this step, we obtain a min-
imum cover that forms a ”diagonal”, meaning that
the segments of M are monotone when viewed radi-
ally around O. Each time the algorithm backtracks
while processing this step it removes one edge. Thus
constructing M, is done in linear time.

The following two theorems establish the correct-
ness of the previous step.

Assume that the line equation of a subtending edge
e; is given by y = a;z + b;. Furthermore,

o Let 6,; = b,\/l—;_c;?

oLeta:\/>%L.
2

o Let 1o = #4222,

o Let p = ﬂﬁgg

Let y = t;z be the line equation of ray r; ray =’
being its symmetric with respect to the z-axis has
line equation y = —t; .

Theorem 2.4 There ezist a splitting ray if and only
if 7o belongs to the open interval |—11,t1[. Moreover,
the line equation of the splitting ray is given by y =
ToT.

PROOF Let y = tz be the line equation of the
splitting ray, .. Set C; = (v,r;) and C; = (7, 7).
We want to fix ¢ such that the sum of the lengths
of €11 and e3 2 is minimized, or such that the sum
of the lengths of €37 and e;,2 is minimized. . Let
f(t) = L(e1,1) + L(ez,2). The slope of the splitting
ray is a root of f. Deriving f, and solving f'(t) = 0,
yields 70 and 7 as roots. Further algebraic manipu-
lations establish the result. o

Assume that the splitting ray is given by y = nz,
i = 1,2. Let S$; = (r,75), and Sa = (rr,,70) be
respectively the left and right sub-cones, determined
by y = mz. Let p be the intersection point of the
underlying lines of e; and e».

Theorem 2.5 If p belongs 1o ) and there exist a
splitting ray, then the pair {e, 2,c21} forms ¢ minz-
mum cover.

PROOF Outline of the proof: We show that
L(e1,2) < L(ez,2), by simple algebraic manipulations

of the expressions of L(e; ;). )

The proof of correctness has been sketched by the
various lemmas and theorems stated. The overall idea
being that no edge can participate with more than one
segment in the minimum solution. This result lead to
the computation of the unique splitting ray between
two subtending edges. By studying the relationships
between the slope of the splitting rays and the slope
of the edges, and the location of the intersection point
of their underlying line, minimum pairs where deter-
mined in the previous theorem. The generalization of
this result to n edges lead correctly to the outlined
algorithm.

Aside from the initial sorting step, every other step
is performed in linear time : dividing ¥ into two scts,
climinating all the edges whose underlying lines inter-
scct with the underlying line of ¢y in @', constructing
the sets M, and M_, and finally constructing the
minimum cover M.

2.3 Lower Bounds

Although the slopes of the splitting rays implies the
use of the square root function, the algorithm does
without it since its decisions are based on compar-
isons of slopes. Thus squaring the slopes of the split-
ting rays, a constant number of times, avoids using
the square root. Moreover, the algorithm outputs a
sequence of triplets of the form (e;,ej, ex), cach of
which represents a scgment in the minimum cover,
determined by the splitting rays of (e;, ¢;) and (¢,
ex). Computing these splitting rays involves some im-
plementation of the square root function; a step that
is left open to the user.

The problem of determining this sequence of
triplets has an Q(nlogn) lower bound, as established
by the following two theorems.

Theorem 2.8 Given a cone (' and three non-
intersecting positively sloped subtending edges ey, ea,
e3, with underlying lines intersecting at point p in Q,
then there exist a unique minimum cover containing
one segment from each edge.

PROOF  Outline of the proof: Assuming that the
three edges are in order e, ea, ¢3, then by using
implicit derivation, we show that the slope of the
splitting ray of e; and ez is less than that of €3 and
¢3. Theorem 2.5 implies then that there are three
segments in any derived minimum cover. Since the
slopes of the splitting rays are fixed, there is but one
minimum-cover. i



Theorem 2.7 Finding the sequence of triplets re.
quires in the worst case nlogn time under the al-
gebrawe model of compulation

PROOF  Transformation from the SUCCESSOR
problem, which is defined as follows : Given a set A of
n positive integers, determine the successor for each
of them in A. ‘T'his problem has an obvious nlogn
lower bound.

Map cach integer @; of A onto a line segment
Y = a;x 4-b;, such that all line segments passe through
a point p, in Q. Solve the Minimum Cone Segment
Cover problem. By the previous theorem, any so-
lution will contain n segments, which will be given
in the form of a sequence of triplets. In linear time
extract from each triplet the successor of the point,
who was mapped to the middle line equation in the
triplet. (m}

3 The intersecting case

The  algorithm computes all intersection points
among the edges of I¥' as follows : it sorts separately
the sct of vertices V. lying on ray 7, and the set of
vertices Voo lying on ray ' | based on the distance of
the vertices from .

Let ¢;; — (vr:, v, ;) be an edge of E, with vertex
v, , lying on r having rank i in the sorting of V,; Vpr 5
is defined in a similar way.

The algorithm intersects e; ; with ek, t=1,...n,
k - 1,...,7— 1. Let T be the computed set of in-
tersection points. The set 71" is then sorted radially
around O. Let q; be the first intersection point in
the sorted order. The algorithm constructs the sub-
cone Cy of €', determined by 7 and the ray r; pass-
ing through ¢,. It then intersects C; with E, and
obtain the set I9) consisting of non-intersecting seg-
ments. ‘The next step is a call to the algorithm for the
non-intersecting case with €'y and E, as parameters
and which outputs a minimum cover for O given (,
and I5;. The process is repcated over each consecu-
tive sub-cone. After processing the last sub-cone, the
minimum covers for the various sub-cones are merged
to form the minimum cover for O, given C and E.

The correctness of this divide-and-conquer type of
algorithm is based on the correctness of the algorithm
that solves the non-intersecting case and on the fol-
lowing theorem.

Theorem 3.1 Lel My and M5 be two minimum cov-
ers for O, given I; and C; as defined above, i = 1, 2.
Let (1'1,3 - CLU('y and .E1,2 = FE; U FE,y. Denote by
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M, o the minimwin cover for O given Cy2 and Ey a2,
then Ml,g = M; U M,.

PROOF Immediate, by contradiction. O

The time analysis of this algorithm is straightfor-
ward : finding all intersection points requires O(m),
where m is the number of intersection points. This is
due to the fact that if ¢; ; intersects with ek, then
(vr,i, vr) has the reverse order of (vr1,5, vrr4). Sort-
ing the set Q takes mlogm, solving the problem over
a given sub-cone takes O(nlogn). Finally merging
all the contiguous minimum covers requires O(m.n).
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