104

An Algorithm for Computing Compacted Voronor Diagrams
Defined by Convex Distance Functions

Thomas C. Kao

Pavid M. Mount

Department of Computer Science
University of Maryland
College Park, MD 20742

Internet: kao@cs.umd.edu

Abstract

We present an algorithm for computing a compact rep-
resentation of the generalized Voronoi diagram for a
set of n line segments under a distance function de-
fined by a k-sided convex polygon. Our algorithm
runs in O((log® k)nlogn) time improving on the existing
O(knlogn) algorithm and produces a compact represen-
tation of the diagram of size O(k + n) from which point
location queries can be answered in O(log k +logn) time.
The algorithm has the interesting property of breaking
through the Q(kn) output size lower bound for the run-
ning time of the algorithm.

1 Introduction

In this paper we reconsider the problem of computing the
generalized Voronoi diagram of a set of disjoint polygonal
objects in the plane using a distance function defined by
a convex polygon. This problein was studied by Leven
and Sharir [LS 87}, and is motivated by the following mo-
tion planning problem: Given a convex polygon (' with
k sides and a set W of polygonal obstacles, which are
composed of a set of n line segments (“walls™) and iso-
lated points, plan a purely translational inotion of ! from
a given initial position to a desired final position during
which (! avoids collision with the obstacles, or determine
that no such motion exists. (We assume that these n line
segments only intersect at endpoints.) Leven and Sharir
showed that this problem could be solved by computing
the generalized Voronoi diagram of W with respect to a
distance function defined by ', rather than the standard
Euclidean distance metric. Such a generalized Voronoi di-
agram will be referred to as a C-diagram [For 85] through-
out this paper. The generalized Voronoi diagram was also
studied by Chew and Drysdale [('D 85] (for point sets
only) and Fortune [For 85], with time bounds similar to
Leven and Sharir.

Leven and Sharir assumed that the convex polygonal
robot that defines the distance function has a constant
number of sides, and they presented an O(nlogn) algo-
rithin for computing the diagram. ‘Fhey observed that if
the number of sides k of the conves distanee function is
taken into account then the running time of their akgo-
rithm is O(knlogn) and uses O(kn) space. Because the
generalized Voronoi diagram can cousists of ©(kn) line
segments in general, in the worst case their space bounds
are optimal and time bounds are within a logarithmic fac-
tor of optimal stmply by consideration of output size. {In
addition there is the standard 2(n log n} lower bound on
the computation of the Yoronor diagram.)

'The principal contribution of this paper is & modifi-
cation to Leven and Sharir’s algorithm which runs in
()((logg k) logn) time and stores the diagram m o com-
pacted form which requires only Otk + n) space. 'The
compacted represeptation inherits many of the essential
query properties of the original dhagram, in particular
point location querics can he answered in O(log &+ logn)
time, matching the tine bound for the standard repre-
sentation.

From the standpoint of applications, it may scem
frivolous to consider convex robots with arbitrarily large
numbers of sides. M is nok anreasonable to helieve that
roboties applications, any convex shape ean be repre-
sented to an acceptable degree of precision by a polygon
containing no more than, say, 20 sides. Even though the
algorithmic techniques which we present. are not sophis-
ticated, there are two reasons that we feel the result is of
unportance.

e 'This is among a few nontrivial examples in which a
standard geometric structure (in this case the gener-
alized Voronoi diagramy), can be stored naplicitly us-
ing sublinear storage so that querics can be answered
in the same tisme bound (see also [KGHSSSW 89]).

This is of methodological interest, becanse it s

tempting to assume naively that output size is a rea-
sonable lower bound for the complexity of a prob-
lenmy, without considering alternative representations
or the information theoretic content of the output
representation. ‘This caveatl was discussed at some
length by Guibas and Seidel in their paper on com-
puting convolutions [(3S 87]. 'The notion of find-
ing compact representations and dealing with implic-
itly defined objects is pervasive throughout compu-
tational geometry, but has yet to be addressed within
the domain of generalized Voronoi diagrams.

e In practice, moderate multiplicative factors on run-
ning time can he tolerated especially when consider-
ing preprocessing time, which is what we are doing in
computing a Voronoi diagram. However, the space
requirements of a scarch structure must be paid for
throughout the lifetime of query processing. Multi-
plying the space required by a complex data struc-
ture by a moderate multiplicative factor (e.g. 20)
may be unacceptable in applications where space is
fimited.

The generalized Voronoi diagram for a collection of n
line segments using a convex distance function is a subdi-
vision of the plane into n regions (possibly unbounded).
There are O(n) vertices of degree three or greater, which
are connected by a collection of “bisectors” (relative to
the convex distance function) between pairs of neighbor-
ing objects. Fach bisector is a simple polygonal arc con-
sisting O(k) segments. In general these bisectors are not
convex, but they possess certain star-shaped properties
rnln.hvv to the objects they biseet. Qur algorithm is a
simple modification of Leven and Sharir’s algorithin. In
Section 3 we show that by exploiting these propertics we
can perform the essential primitive tracing and intersee-
tion oper. ations needed to compute the Voronoi diagram
in ()(ln;_, k) time per primitive, improving on the naive
O(k) time algorithms for these primitives. In Section 4
we show how to represent. the entire diagram in a compact.
form requiring O(k+n) space, and finally we show how to
perform point location queries from this representation.

1.1 Voronoi Diagrams and Extensions

Many proximity problems can be solved using Voronoi
diagrams [PS 85]. A natural question to ask is whether
the Voronoi diagram can be generalized to other geomet-
ric shapes and metrics. These gencralization would have
many applications. Lee and Wong [LW 80] generalized
the Voronoi diagram using Ly metric and L., metric and
pointed out that these diagrams speed up retrieval algo-
rithms for two-dimensional storage systems. Kirkpatrick
[Kir 79] and later Yap [Yap 87] proposed an O(nlogn)
time algorithm for computing the Voronoi diagram of a

105

set W of polygonal objects, with a total of n edges or
vertices.

A natural extension to L, metrics is the so-called con-
vex distance functions introduced by Minkowski [Lay 72].
Given a convex polygon (" and an interior reference point
¢ we define the distance function based on C and ¢ as
follows. We will refer to the position of C' in the plane
in which the reference point ¢ of the convex polygon C'
lies at. the origin O as the standard position of C, and de-
note this placement by (',. For a convex body C' and real
number «, let o’ = {ap : p € C} (C grown by the scale
factor &) and for vector ¢, let g+ C = {g+p:p € C}
(the translate of C by ¢). Let a and b be two points in the
plane. We define the (-distance from a to b (or equiva-
lently, the C-closeness of a to b), denoted by de(a,b), as
de(a,b) = inf{oe > 0: « € b+ aC,}. Intuitively, the C-
distance from a to b is the sinallest (positive) scale factor
« needed for a copy (! positioned with its reference ¢ at
a to enclose the point b.

Note that since the origin O is an interior point of C,,
the C-distance is always finite, positive, continuous, and
obeys the triangle inequality, but need not necessarily
be symmetric, and thus is not induced by a metric in
general [LS 87]. The C-distance from a point p to a given
object W; € W is defined in a natural way as de(p, W) =
inf{a>0: (p+aC,)NW; £ 0}.

Using d¢ we define the C-diagram of W with respect
to the convex polygon (' as follows. For each i # j de-
fine H(i,j) = {p : de(p.W;) < de:(p,Wj)}, as the set
of all points in the plane whose (-distance to W; is no
greater than their C-distance to Wj. Then define the
Voronoi]mlyqon (ecll) Vor(1W;) associated with Wi to be
Vor(W;) ﬂ j#i 1 (4, j), as the set of all points in the
pl«mo whoso —(loseness to Wy is not greater than their

C-closeness Lo any other clement of W. Finally, the (-
diagram is defined to be the set of points which belong to
two or more Voronoi polygons. See Figure | for an exam-
ple of C-diagram from [LS 87], where (' is a triangle, and
the set W consists of two triangles and one quadrilateral.
Note that the dashed lines in the figure are the Voronoi
edges defined by the three convex objects of 17, while the
dotted lines are the additional Voronoi edges which result
if we consider the (open) line segments and vertices of W
as separate objects. We have excluded the portion of. the
diagram lying in the interior of W. :

2 Technical Preliminaries

2.1 Leven and Sharir’s Algorithm

Paraphrasing from Leven and Sharir’s paper [ILS 87], their
algorithm for constructing the C-diagram proceeds as fol-

106

</

Polygon C

>

Figure 1: An example of C-diagram

lows. Let P be the set of up to 2n leftmost and rightmost
points on objects in W. Following [Yap 87], they divide
the plane by vertical lines into 2n slabs such that the in-
terior of each slab contains exactly one point of P. The
algorithm runs in stages. In each stage the set of slabs is
partitioned into disjoint pairs of adjacent slabs and cach
such pair is combined into a new, larger, slab. That is, in
the first stage the 2n slabs are combined in disjoint. pairs
into n slabs, in second stage these n slabs are combined
in pairs into (n/2) slabs and so on. After O(log 1) stages
only a single slab remains and the algorithm terminates.

In order to achieve O(nlogn) time and O(n) space
bounds for the construction of C-diagram, Leven and
- Sharir [LS 87] assumed that the polygon €' has a fixed
number of sides. For such objects certain operations,
which are used during the construction of the C-diagram
as described below, can be accomplished in constant teme.
Such operations are: (a) computing the C-distance be-
tween any two points in the plane or from a given point
in the plane to a straight line; (b) calculating the intersec-
tion points of the locus of points which are C-equidistant
to two “walls” (line segment) or “corners” (vertices) of
ohjects in W and another such curve or a straight line
segment. (We denote such a locus as a bisector.)

If the number k is taken into account, Leven and
Sharir’s algorithn uses O(kn log 1) time and O(kn) space.
We adopt. the convention [Kir 79][Yap 87] that each wall
can be decomposed uniquely into an open line segment,
and two corners from its two endpoints. Therefore, the
sites in W oare either open line segments or points. Such.a
convention is always plausible and will only increase the
complexity of the problem by a (small) constaut factor.

We will show in Section 3 that these prumnvo opera-
tions can bhe performed in O(log k) and ()(I()g k) time for
items (a) and (b) above, respectively. By implementing

these primitive operations carefully and representing the
C-diagram compactly, we are able to reduced both the
time and space bounds. Later in this paper, we will show
an O((log? k)n log n) time algorithm for constructing the
C-diagram, using only O(k + n) space.

3 Algorithm Descriptions, Cor-
rectness and Bounds

3.1 Representation of Bisectors

Recall that the C-distance {rom a point p to a site s
is denoted as dc(p,s). The bisecctor B of two sites
(s1,52) is the set of points b (in the planc) that are -
equidistant to both s; and se. In other word, B3(s),s2) =
{6] de(b,s)) = de(b,s2)}. We represent a point b on
the bisector B(sy,s2) by a six-tuple (b, sy, 52,0, ¢, ¢2),
where absolute value of o is the scale factor of €/ ¢, ¢y
are the contact points of (Jo|(’) with the sites sp and 5o
respectively. Such a six-tuple is called a buscctor poinl
descriptor. We adopt the convention that o is positive
(resp. negative) if b lies to the left (resp. right) of the
dirccted segment from ¢y to ey, We also define the points
pi of s;,i = 1,2, to be the contact points of the objects
s; with the scaled body Je|€". (If s; makes contact with
|| along an edge, choose p; to be the point with the
lexicographically simallest coordinates.)

Given two objects s; and sy, we note that if a point b
is on B(s;,s2), then we can compute the scale factor « in
O(logk) time. Conversely, given a (signed) sc nlv factor v,
we can compute a point b € (s, su) in ()(lo;., k) time,
or report that no such point. exists. These conversions are
omitted here to save space.

3.2 Implementing Primitive Operations

Next we consider how to implement the primitive opera-
tions needed by Leven and Sharir’s algorithm,

Computations of C-distance:

o C-distance de(a,b) :
Using binary search find the intersection point 2
of ¢! (placed so that its reference coincides with a)
with the directed ray from a to b, Then de(a,b) =
[ab|/{@@]. ‘This can be done in O(log k) tine,

e (C-distance d¢(a, L) :

First find any fixed contact pownt 2 of €' with the
supporting line parallel to 1, and on the same of ¢
Note that ar may not be perpendicnlar to the luu-
L. Compute the intersection point p of I with the
ray dirceted from a to 2. Then dea, L) = |ap|/fdr].
This can be done in O(log k) time.

Sy
$\
vVoN
\ \\.1
\ N
\ N\
N
Voo »
82 53
Polygon ¢

Iligure 2: Case PPP

Interscction of biscctors: With loss of generality, as-
sume that the three contact points ep, ey and ¢y are
in cyclical order when listed counterclockwise (on the
boundary of |r]C, for some o). The output will be a pair
(b, «v), where bis the point that is C-equidistant to to
three sites sy, sz and sy, and « is the (signed) C-distance
between b and the three sites. Again, we assume « is pos-
itive. Recall that the & vertices of (f are stored in coun-
terclockwise order. We also observe that there are four
possible cambinations of sites to consider: three (open)
lines (LLL), one point. with two lines (PLL), two points
and one line (PPL), and finally three points (PPP). We
will only show two of the cases (PLL and PPP) to illus-
trate to ideas, the rest are lefl as exercises Lo save space.

Case PLL: In this case, s; 18 a point, while both s+ and
sy are (open) line segments. Note that the fixed contact
points ¢;, 7 = 2,3, of the line segments s; are precomputed
once-for-all in O(log k) time each.

L. Let 4y be the point ;. Similarly, let) be the point
¢ We will maintain the invariant that ¢ lies coun-
terclockwise between I and .

2. if the points [; and hy are on the same edge ¢y of €,
then go 1o step 6.
clse pick the vertex with index half-way between ()
and hy as the contact point ¢;.

3. Compute oy =
5751/ [eves).

Compute a3 =

4.1 an > oy, let by = ¢ Go Lo step 2,
clse if oy < oy, let 1) = ¢, Go o step 2.

5. (We have found that ¢ lies on the edge e; of step 2)
Compute the correct ¢ directly (and analytically).
Compute the scale factor o = |5753]/|61¢z|. Compute

the point _; = 51— (0Ocy). Exit and output the pair

(b, v).

Correctness: see case PPP below.

107

Case PPP:
Figure 2).

In this case, all threc sites are points (sec

1. Compute hg (and also [;) to be a vertex of C that is
a parallel tangent. to the ray from s3 to s;.
Compute hy (and also I5) to be a vertex of ' that is
a parallel tangent to the ray from s; to sa.
Compute hs (and also I3) to be a vertex of (7 that is
a parallel tangent to the ray from ss to s3.

We will naintain the invariant. that ¢; lies counter-
clockwise I; and h; for i = 1,2, 3.

2. Let u be the smallest index such that the points /,
and h, are NOT on the same edge e, of C.
If % is not equal to 1, 2, or 3, go to step 7.
fu=1let v =2 and w=3,
elseifu=2,let v=3andw=1,
elseifu=3,let v=1and w=2.

3. Pick the vertex with index half-way between {, and
hy as the contact point ¢y.

—_— —_—
4. Locate ¢, such that cyey||sys,.

Isusu I/l('n('v l

5. Locate ¢, such that (';?;,,“SR,,.
53w/ |utu]-

6. if oy > (ry,, (imove ¢, clockwise, which would move
both ¢, and ¢,, counterclockwise) let hy, = ¢y, I, = ¢
and l, = ¢y. Go to step 2,
else if «, < a,,, (move ¢, counterclockwise, which
would move both ¢, and ¢, clockwise) let [, = ¢,
hy = ¢, and h,, = ¢,,. Go to step 2.

Compute a, =

Compute ay =

=

. (We have found that ¢, lies on the edge ¢, ¢2 lies on
the edge €4, and ¢y lies on the edge e3)
Find the correct ¢), ¢ and ¢3 directly (and analyt-
ically). Compute the scale factor a = |575z2]/|¢rc3].

Compute the point b = s1 — a(Ocy). Exit and

output the pair (b, o).

Correctness: We first show that the function f(¢,) =
((vy — @ty) defined over the boundary of (! between vertices
l, and hy, has a unique zero €. Furthermore, Ve, €
(Luvey), flew) < 0, and Ve, € (e, hy), f(en) > 0. Mo see
this observe that by moving ¢, counterclockwise hetween
[ly..hy], it can be shown that the angle 0 = Z(c,c.c0)
increases. Let 0 = L(cycuey) and @ = L(cpcycy). By the
law of Sine, the ratio :
[Cate| sin(m -0 —¢)

y(0)=|wwI: sin(0)

sin(0 + ¢)
sin(f)

With the angle ¢ = Z(¢y ccy) fixed, it can be shown that
that dy/d0 < 0,V0 € (0, 7). Note that f(c,) = f(0) =
(|5%5s] — y(0) * |5a5w])/(acs|. Therefore, the ratio y is
monotonically decreasing as ¢, moves counterclockwise,
and it is plausible to perform a binary search on ¢,.

108

Analysis: This is a nested binary search for ¢, ¢2 and
c3. Step 1 is a simple binary search for the vertices ;
and h; for the valid range of the contact point ¢;, for
i=1,2,3. This can be computed in O(log k) time each.
Step 4 (and step 5) is a simple binary search for ¢, (and
cw), for a given value ¢,. This takes O(logk) time each.
The main loop is a binary search for ¢, which is per-
formed O(log k) iterations. Therefore, the total time re-
quirement is O(log? k).

In conclusion, the C-diagram of a set of n line segments
for a convex distance function defined by a k-sided convex
polygon can be computed in O((log? k)n logn) time.

4 A Compact Representation for
the C-diagram

In the previous section we have described the basic primi-
tive operations needed for the construction of the Voronoi
diagram. In this section we explain how to apply these
primitives and describe the compact representation for
the diagram.

This compact representation ‘is based on an implicit
representation for the bisector of two sites, cach of which
can either be a point or a line (segment). A bisector is
defined to be the locus of points which are C-equidistant
" to the two sites. As mentioned earlier, the bisector of two
points is a polygonal chain of up to k sides, monotonic
with respect to each point site. The bisector of a point
and a line (segment) is a convea polygonal chain of up to k
sides, monotonic with respect to hoth sites. The bisector
of two lines is a third line separating the two lines.

The C-distance from a point p to a site s, denoted
de:(p.s), can be computed in O(log k) time. Therefore
we can determine whether a point lies above or helow a
biscctor (of sites s and t) in O(log k) time by comparing
di:(p.s) with de(p,t). We can compute the intersection
of two bisectors in ()(log;2 k) time. This also means that
we can compule a point that is C-equidistant to three
sites in O(log” k) time.

By representing the biscctors implicitly, we can cut
the total space requirement. from O(kn) to O(k -+ n). In
essence, we only store one copy of the polygon €7 and rep-
resent. cach bisector (with up to k edges) by one pseudo
edge. The C-diagram will be represented by a planar
graph with only O(n) pseudo edges and O(n) faces.

Polygon C

Figure 3: V-vertices and Spokes

4.1 Spokes, Contour Tracing and Point
Location

Let L and R are two adjacent slabs with L lies to the left
of R. To merge the partial C-diagrams from Vor(/l) and
Vor(I?), we have to compute the locus of points which
are equally C-closest. to a site in L Lo a site in I8, Follow-
ing Kirkpatrick [Kir 79], the locus of points is called the
conlour separating L from 2. According to Lennma 3.1
of [LS 87], it is possible that the contour may extend to
infinity and “return from infinity™.

Recall that the sites are cither points or (open) line seg-
ments. There are two kinds of vertices in the C-diagram.
The first kind is called the V-vertices, whichlare vertices
of degree 3 or more found by the intersections of (Lhree or
more) bisectors of sites. There are O(n) such V-vertices
and O(n) bisectors. The second kind is called the 3-
vertices which are the vertices of degree 2 along a bi-
sector between two sites. Each bisector has up to & such
B-vertices, with a total of O(kn) for the entire C-diagram.

By a technique very similar to that of [LS 87], the con-
tour can be computed with the help of spokes defined
helow. We divide cach cell of Vor(L) and Vor(I?) into
subceells by adding line segiments which join cach V-vertex
poof the (partial) C-diagram to the three points (p;) on
the three corresponding sites (s;) in L or I8 to which juis
C-closest. "These line segments are called spokes. Of the
hisectors meeting at the Vovertex g, if a bisector 13(s, 1)
(from clementary sites) with s a point site adjacent to an
open line segment £, then the bisector [3(s,1) is consid-
ered as a spoke from g to the point site s. See Figure 3,
where the robot € is a convex body with three smooth
curves Lo dramatize the effect of pseudo-edges, which ap-
pears as solid spline curves. ‘The Vovertices are circled,
and the spokes are shown in dashed line. The bisectors
from clementary sites that are not considered spokes are
shown in dotted line.

2. A

N /N I
N ’ \ '

’ \ 4 \ t

’ \ ! |

L (\/ !
\ , |\ |‘ ‘/\‘
\ ’ \ \
\ v \ \

v [O— | \

(point,point) (puint line) (line,line)

Figure 4: Three types of regions

Therefore, the boundary of each resulting subcell thus
consists of (1) two spokes, (2) a connected portion of
the biscctor between this site and an other, (called a
pscudo-edge) or possibly two such edges if the subcell is
unbounded, and (3) the site itself, which is either a point
or a (open) line segment.

The reason for the space saving is because every con-
secutive chain (of size up to k) of B-vertices that lie on
the same pisector 13 will be represented implicitly as a
single pseudo-edge descriptor requiring O(1) space. Fach
pseudo-edge ¢(13) (for a biscctor 1) is represented by two
bisector point. descriptors which mark the starting and
ending position on /3. Note that there are only O(n) such
pseudo-edges. By ignoring the B-vertices in the ereation
ol spokes, the nunmber of subeells and spokes is linear in
the mumber of V-vertices only, namely O(n).

The encoded C-diagram: To facilitate point location
query, as discussed below, we need to perform search in
the presence of O(n) straight line segments (including
spokes) and O(n) pscudo-edges. Let iwo adjacent sub-
cells u(s) and v(t) be separated by a pseudo-edge ¢(13),
where points in subcell w (resp. v) are closer to the site
s (resp. 1), and let 13 be the bisector hetween s and (.
We define the region R(w, v) as the union of the regions
ol w and v. "Therefore, the boundary of R is the union
of the boundaries of w and v, excluding the overlapping
pseudo-edge (). (sce Figure 4 for three types of re-
gions) Clearly, there are O(n) such regions. The entire
C-diagram is now encoded as a network of straight line
segments with O(n) sites; spokes, pseudo-cdges, subeells,
and regions. gnoring the pseudo-edges the remaining
subdivision is a straight line planar graph of size O(n)
which we call S(1V).

Point Location Queries: Given a point p in the plane,
we show how to adapt standard point location techniques
to determine which site is closest to p in O(log k + logn)
time, using only O(k 4 n) space. Iirst, apply standard
point. location to S(H') to locate the region R in the en-
coded C-diagram that contains p. This can be done in
O(logn) time as the encoded C-diagram is a straight line

109

planar graph of size O(n) [PS 85]. Recall that a region is
basically the union of two adjacent subcells that share a
pscudo-edge separating two sites, one from each subcell.
Let the region R contains the two sites s and £. We can
determine which side of the pseudo-edge p lies by testing
whether p is closer to the site s or ¢ in O(log k) time.

5 Bibliography

[€'D 85]. L. P. Chew and R. L. Drysdale, 111, “Voronoi
Diagrams Based on Convex Distance Functions”,
Proceedings of the First ACM Annual Symp. on
Computational Geometry, pp.235-244, 1985.

[EGISSSW 89] H. Edelsbrunner, L. Guibas, J. Hersh-
berger, R. Seidel, M. Sharir, J. Snoeyink, E. Welzl,
“Inplicitly representing arrangements of lines or seg-
ments”, Discrete and Computational Geometry, {,
pp.433-466, 1989.

[For 85]. S. Fortune, “A Fast Algorithm for Polygon
Containment by Translation”, Proceedings of the
12th International Colloquium on Automata, Lan-
guage and Progranuning, pp.189-198, 1985.

[(iS87]. L. J. Guibas and R. Seidel, “Computing convo-
lutions by reciprocal search”, Discrete and Compu-
tational Geometry, 2, pp.175-193, 1987.

[Kir 79]. D. Kirkpatrick, “Efficient Computation of Con-
tinuous Skeletons”, TKEE 20th Annual Symp. Foun-
dation Comput. Sci., pp.18-27, 1979.

[Lay 72]. S. R. Lay, “Convex Sets and Their applica-
tions”, Wiley Inc., New York, 1972.

[LS 87]. D. Leven and M. Sharir, “Planning a Purely
'Translational Motion for a Convex Polygonal Ob-
Ject in Two Dimensional Space Using Generalized
Voronoi Diagrams”, Discrete Comput. Geom., 2,
pp-9-31, 1987.

[LW 80]. D. T. Lec and C K. Wong, “Voronoi Diagrams
in L1~ (Loy-) Metrics with 2-dimensional Storage Ap-
plications”, SIAM J. Comput., 9, pp.201-211, 1980.

[PS 85]. F. P. Preparata and M. I. Shamos, “Computa-
tional Geometry, An Introduction”, Springer-Verlag
New York Inc., 1985.

[Yap 87]. C. K. Yap, “An O(nlogn) Algorithm for
the Voronoi Diagran of a Set of Simple Curve Seg-
ments”, Discrete Comput. Geom., 2, pp.365-393,
1987.

