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Output sensitive construction of the 3D Delaunay triangulation of
constrained sets of points*

J.-D. Boissonnat! A. Cérézo?

Abstract

In this paper, two algorithms are presented to compute
the Delaunay triangulation of a set S of n points in 3-
dimensional space when the points lie on a set P of k
planes. If k = 2 the algorithm runs in time O(n log n+1)
where t is the size of the output : if & > 3 the time bound
is O(tklog n). In both cases, the storage is O(n).

1 Introduction

The Delaunay triangulation and its dual, the Voronoi di-
agram, are fundamental structures in computational ge-
ometry. In two dimensions, there exist several optimal
algorithms to compute such structures. In higher dimen-
sions, the size of the output depends on the input distri-
bution, the complexity of the algorithms may depend on
the input size »n and the output size ¢. which may vary
from O(n) to O(nli}lj ). Seidel gives an O(n[’%l]) al-
gorithm which is worst-case optimal in odd dimensions :
[8] describes an output sensitive algorithm running in
time O(n? + tlog n). Unfortunately, in three dimensions
the Delaunay triangulation of a set S of n sites may have
t = Q(n?) tetrahedra, so a worst case optimal algorithm
gives a quadratic complexity O(n?) which is not really
interesting if t is significantly less than O(n?). One of the
main open questions related to the Delaunay triangula-
tion asks for the existence of an output sensitive algo-
rithm computing the Delaunay triangulation in optimal
time O(nlogn+1t). At this time there exist incremental
algorithms whose complexity is randomized and sensitive
to the size of the successive triangulations [3,3]. There
exists also a deterministic algorithin which reaches the
optimal time bound in the special casc of two parallel
planes [1].

This paper presents two algorithms to compute the
Delaunay triangulation of a set & of n points in 3-
dimensional space when the points lie on a set P of k
planes. The algorithm for the case of two planes runs
in time O(nlogn +1). If k > 3 the time complexity is
O(tklog n). In both cases, the storage is O(n).

This algorithm is especially attractive when the num-
ber of planes is small with respect to the number of
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Figure 1: The space of circles

points. This is in particular true when dealing with to-
mographic images and 3-dimensional shape reconstruc-
tion problems [1].

2 Preliminary results

2.1

We take interest in the set of circles drawn in plane P.
This set of circles is represented by a three dimensional
set Cp : the space of circles. Let 22 + y* — 2pr — 2yy +
x = 0 be the cquation of a circle in P ; this circle is
represented by the point (¢, 4, x) in Cp.

We present in this section the propertics of Cp.

Space of circles and pencils of circles

e The set of circles of radius 0 is a paraboloid of equa-
tion : ¢? + v2 = \. A point in P is often identified
with the 0 radius circle centered at this point. If
plane P is identified to the plane y = 0 then the 0
radius circle is obtained by raising the point on the
paraboloid. The interior of the paraboloid is the set
of “imaginary” circles (with negative square radius)
(sce Figure 1). Notice that the horizontal projection



of a point in Cp is the center of the circle. and the
\-coordinate is the power of the origin with respect
to the circle.

e ‘I'wo cireles (g1, 4. \1) and (2, ¥, x2) are perpen-
dicular if the corresponding points are conjugate

with respect to the paraboloid or equivalently if -

N1+ X2 = 2@ + 28 .

e As a particular case. the set of circles passing
through My € P is also the sct of circles perpen-
dicular to the 0 radius circle My, which is in Cp
the polar plane of Ay. But, as Afy belongs to the
paraboloid. the polar plane is nothing clse than the
tangent plane to the paraboloid at Mg. For a circle
in the half space (limited by this plane) which does
not contain the paraboloid, My is inside the circle,
For a circle in the other half space, Mg is outside.

o A pencil of circles, that is the set of linear com-
binations of two circles, transforms in Cp into the
line through the two points. A pencil of circles with
limit points is a line hitting the paraboloid in the
two limit points. A pencil of circles with base points
is a line which does not hit the paraboloid; this line
is the intersection of the two planes tangent to the
paraboloid at the base points. A concentric pencil
is a line parallel to the x axis (sce Figure 1).

e The points at infinity of the projective closure of
dp correspond to the straight lines in P, namely
t-}xe point at infinity in the direction of (¢, ¥, ) is
t;'he straight line of equation —2pr — 2¢y + x = 0,
and the point at infinity of a line in Cp is the radical
axis of the corresponding pencil.

Thus the pencils whose radical axis is a given line
in P form in Cp the set of lines parallel to a given
direction (orthogonal to the radical axis).

In particular, a pencil of circles having the z-axis as
its radical axis corresponds in Cp to a line parallel
to the ¢-axis.

2.2 Empty circles and Voronoi diagrams

As noticed in the preceding section, the set of circles
which do not contain a given point maps in Cp into an
half space. limited by the polar plane of the point. Thus,
il Sp is a set of sites in plane P. then the set of empty
circles (i.e. the set of circles which do not surround any
site of Sp) of plane P is in Cp the interscction of the
corresponding half spaces. It is a convex polyhedron
Usp. whose facets are tangent to the paraboloid. ‘The
intersection of this convex set with a line. representing
a pencil of circles is made up of the extremal empty
circles of this pencil (sce Figure 2). In general there are
zero or two such extremal circles. These circles are the
cmpty circles passing through a point of Sp. Because
there is exactly one circle of a pencil passing through
a given point, the problem of the determination of the
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Figure 2: Set of empty circles

extremal empty circles of a given pencil can be viewed
cquivalently, as the determination of the points of Sp on
these circles. '

In particular, for a concentric pencil, the intersection
with a vertical line in Cp gives the largest empty circle
having a given center. This circle passes through a site
of Sp, namely the site of Sp which is the closest to the
center. In other words the projection of Us,, on the hor-
izontal plane is the Voronoi diagram of Sp. This can be
viewed as a new interpretation of the well known corre-
spondance between intersection of half spaces tangent to
the paraboloid and Voronoi diagram [6).

2.3 A query problem

Lemma 1 Let Sp be a set of siles in plane P, and F be
a pencil of circles, the exiremal empty circles of F can be
found in O(log n) time using O(n) space and O(nlogn)
preprocessing lime.

Proof. The algorithm first constructs Us, and then
computes in Cp the intersection of the line representing
F with the convex Us,, which can be done within the
given bounds [7]. If there is no intersection between the
line and Us,, then all the circles of the pencil contain
some points of Sp. o

3 Voronoi diagram of n points in
k planes

This section deals with the main problem of this paper :
the construction of the Delaunay triangulation of a set
S of n points belonging to a set P of k planes.

The algorithm starts from a first tetrahedron and enu-
merates all the Delaunay tetrahedra in a shelling order.
Lemma 1 is used as described in Section 3.1 as a h';int
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to determine the Delaunay neighbor of an already con-
structed tetrahedron through one of its facets.

3.1 Searching for a neighbor

Lemma 1 which solves a 2-dimensional problem. can be
used to solve 3-dimensional queries in a special case. Let
P be a plane in the euclidean 3-dimensional space, and
Q be the radical plane of a pencil of spheres : then the
intersection of the spheres with P is a pencil of circles
whose radical axis is P N Q. Let Sp be a set of sites in
plane P. The extremal spheres (if there exist any) which
do not contain any point of Sp are obviously determined
by the extremal empty circles of the pencil of circles.

If all the planes P in P are considered now, then the
extremal spheres which do not contain any point of § =
UPe'pSp can be determined in two steps. Firstly, for
each plane P, the extremal spheres which do not contain
any point of Sp are determined. Then. we select from
the at most 2k candidate sphercs the possible solutions.

In this way, it is possible to find the neighbors of a
given Delaunay tetrahedron. 1f abed is a Delaunay tetra-
hedron, then there exist two extremal empty spheres in
the pencil of spheres with base points abe. One is the
sphere circumscribing abed, and the other is determined
by a point of S, denoted papc. abepape is the tetrahedron
adjacent to abed through triangle abe in the Delaunay
triangulation.

Lemma 2 A sel Sof n points lying in k planes can be
preprocessed in O(nlogn) time and O(n) space. so that
the neighbor of a Delaunay telrahedron can be deler-
mined in O(klogn) time.

3.2 The main algorithm

These remarks yield a simple algorithm to construct the
Delaunay triangulation of a set of n points lying in k
planes. The algorithm starting from one initial tetra-
hedron constructs the whole set of Delaunay tetrahedra
incrementally. In order to achieve a lincar space com-
plexity, we process the tetrahedra in an order that en-
surcs that the set of already constructed tetrahedra re-
mains simply connected at each step of the incremental
construction.

This can be ascertained by making use of the mech-
anism of shelling introduced in [4] for proving that the
boundary complex of any convex polytope is shellable in
any dimension [4, Proposition 2). This idea has already
been exploited in [8] and the reader can also refer to [8,
Section 3].

The 3-dimensional Delaunay triangulation is inter-
preted as a 4-dimensional simplicial lower convex hull
L of points on a paraboloid. Let D be a line parallel
to the axis of the paraboloid. and imagine an observer
moving down along D from the intersection point of D
and £. This observer reports first the facet Fy of £ hit
by D and. as he moves down along 1), he reports the

Figure 3: The shelling order

facets Fa,...,F, in the order they become visible (see
Figure 3). This order called the shelling order is given
by the attribution of a priority to cach facet of L. The
priority of a facet is the altitude of the intersection of its
supporting hyperplane with D and the shelling order of
the facets corresponds to the decreasing order of these
priorities. [4] cnsures that this order is a good shelling
of every convex polytope, i.e. that for all 1, U;'-_._,F} is
a simply connected 3-dimensional topological ball in 4-
dimensional space. |

Going back to the original problem of constructing 3-
dimensional Delaunay triangulation, we are able to com-
pute the priority of each tetrahedron ; and, if the tetra-
hedra are constructed by decrcasing priority, the set of
constructed tetrahedra remains simply connected at each
step. We assume that line D is in gencral position, and
there are no two distinct tetrahedra with the same pri-
ority (degeneracies can be solved by perturbing D).

Let T be the set of already constructed tetrahedra.
We maintain in a priority queue the set of tetrahedra
not in 7, but sharing a face with the tetrahedra of 7.
Notice that, by the result of [4] a tetrahedron of the
queue shares one, two or three faces with 7 ; thus it
appears onc two or three times in the priority queue
(with the same priority). A tetrahedron is present only
once if and only if one of its vertices has never been
considered so far.

As all the Dclaunay tetrahedra adjacent to 7 are
present in the priority queue, we can ensure that the
next tetrahedron in the shelling is at the beginning of
the queue. ,

Thus our algorithm will run as follows :

1. Execute the preprocessing step of Lemma 2.
2. Initialization :

(a) Compute a triangle aibic; of the convex hull
(for example the first face produced by the gift
wrapping algorithm).

(b) Compute dy = pa,b,., using Lemmna 2.



(¢) Compute the “vertical” line D in R' hit-
ting facet aybycydy lifted on the 4-dimensional
paraboloid.

(d) Insert apbyeqdy in the priority queue.
3. Repeat

(a) Find the maximal tetrahedron abed in the pri-
ority qucue,

(b) If abed appears only once, without loss of gen-
erality d = par.. Add tetrahedron abed in
T, compute pupd, paca and pyeq, add abdpgpq,
acdpacq and bedpyeq in the priority queue.

(¢) Ifabed appears twice. without loss of generality
d = pay. and ¢ = puqe. Add tetrahedron abed
in 7. compute pg.q and pyq, add acdp,.4 and
. bedpyqq in the priority queue.

(d) If abed appears three times, withont loss of
o generality d = page. € = papa and b = pg.q.
Add tetrahedron abed in T, compute py.q, add

bedpyeq in the priority queue.

Until the queue is empty.

3.3 Complexity

The complexity of this algorithm is the following.

Step 1 is completed in O(nlogn) time and uses O(n)
space by Lemma 2.

Step 2a is done in O(n) time.

Step 2b takes O(klogn) tine by Lemma 2.

Step 2¢ and 2d are done in constant time.

At each iteration of Step 3 a new tetrahedron is added
to the Delaunay triangulation thus this step is executed
! times. Opcrations on the priority queue are done in
O(log n) time, the determination of a point p,,, is done
in O(klogn) time by Lemma 2 and the computation of
the priority of a tetrahedron takes constant time. Thus
the overall cost of Step 3 is O(1k log n).

Each item in the priority queue corresponds to a trian-
gle on the boundary of the already constructed tetrahe-
dra. As the tetrahedra are reported in a shelling order,
these triangles form a topological sphere, and by Euler's
relation there is at most a linear number of such trian-
gles. So the size of the priority queue is O(n).

Theorem 3 The thiee dimensional Delaunay triangula-
lion of n points lying in k planes can be computed using
O(tklogn) time and O(n) ertra space where t is the size
of the outpul.

In the special case of only two planes, it is possible to
speed up the algorithm [2]. This is in fact a generaliza-
tion of the algorithm for two parallel planes [1].

In this abstract, we just stated the following theorem :

Theorem 4 The three dimensional Delaunay triangu-
lation of n points lying in 2 plancs can be computed in
O(t + nlog n) time and O(n) space wheret is the size of
the oulpul.
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4 Conclusion

We have presented output sensitive algorithms for con-
structing the Delaunay triangulation of special sets of
points in 3-dimensional space. Specifically, when the
input consists of n points scattered through k planes,
we have shown that their Dclaunay triangulation can be
computed in O(tklog n) time and O(n) space. This time
bound can be reduced to O(nlog n+t) (which is optimal
with respect to the input and the output) when k = 2.
This result makes a further step (after [1]) towards the
efficient construction of the Delaunay triangulation in an
output sensitive fashion in 3-dimensional space. We be-
licve that these results are of interest in several practical
applications, especially computer vision and computer-
ized tomography where data are naturally distributed in
planes. Welet as an open question whether our construc-
tion can be improved with respect to k ; and we recall the
main (and probably difficult) unsolved question in that
area : is O(nlogn + 1) an upper bound for constructing
the Delaunay iriangulation of n points in 3-dimensional
space if the triangulation consists of t leirahedra ?
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