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Illuminating Squares on a Transversal
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Hoffman has shown that |n/4] lights are
sufficient to illuminate the interior of an or-
thogonal polygon with n vertices and h or-
thogonal holes [5]. This implies that n + 1
lights are sufficient to illuminate n squares
in the plane. Here we show that in the case
that the set of squares admits a transversal
|2n/3]+2 lights are sometimes necessary and
that |2n/3| 47 are always sufficient. We also
give an O(nlogn) time algorithm for find-
ing a placement of such lights. These results
answer a question posed by Toussaint at the
1990 Bellairs Workshop on Illuminating Sets.

1 Preliminaries

A line which intersects each member of a set
S of objects is called a line transversal for
S. A line is a proper line transversal if it in-
tersects each object in S in more than one
point. From now on the term transversal
means proper line transversal.

A point-light-source, or just light for short,
is assumed to emit rays of light in all direc-
tions in straight lines. Free space, denoted
FS, is the plane minus all of the objects in
the plane. A point p in FS is illuminated
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if there is some light such that the line seg-
ment from p to the light does not intersect
the interior of any object. A set of objects S
is said to be illuminated if all points in F'S
are illuminated.

A manhattan skyline M = (py,...,p,) is
an infinite rectilinear monotone polygonal
chain. (Note that the points are ordered.)
M partitions the plane into two regions both
of which we will call skirs. We present the
following lemma.

Lemma 1.1 Any sky in 'S can be illumi-
nated by two lights. Furthermore, finding po-
sitions for these two lights ean be done in

O(n) time.

Sketch of Proof: To identify two feasi-
ble positions for illuminating the upper sky,
first compute the following five values: zp =
maximum z-coordinate; z,, = minimum z-
coordinate; ypr = maximum y-coordinate;
Ym = minimum y-coordinate; and h,, =
minimum length of a horizontal edge. One
light may be positioned at (ry,y) where

To = &, — 1 and yy satisfies:
YM —Yn _ Yo — Um

IA — T

3hm

The position for the second light is defined
syminetrically. 0

2 Main Theorem

Let §$ = {s1,...,8,} be a set of n isothetic
unit squares in the plane which admit a



transversal. Assume the transversal is be-
tween 0 and 45 degrees. A point is said to
be a blocked point if it cannot be translated
to infinity in any of the four axial directions
without hitting a square. Space limitations
prevent a more formal proof of the following
lemma.

Lemma 2.1 |2n/3] + 2 lighis are necessary
to illuminate a set S of n squares on a
transversal.

Sketch of Proof: Consider the example
in Figure 1. To illuminate all the blocked
points, indicated by shaded regions in the
figure, [2(n —9)/3)] + 2 = |2n/3] — 4 lights
are required. Fach of these lights can illumi-
nate at most one of the vertical strips. There
are |2n/3] — 2 of these so at least two of
these are not illuminated. Also, there are
four horizontal strips which are not illumi-
nated. At least six lights are required to il-
luminate these two vertical strips, these four
horizontal strips and the exteriors of the re-
maining squares. 0O

Figure 1: Shaded areas indicate blocked

points.

For the proof of sufficiency the idea is to
- show that [2n/3]| — 1 lights are sufficient to
illuminate all blocked points and that 8 lights

are sufficient to illuminate the rest of the
plane.

We say that a square s is above a blocked
point if the point hits s when translated di-
rectly upward. Similarly s may be below, to
the left or to the right of a blocked point.
Every blocked point has at least one square
above, below, to the left and to the right of
it. We are going to illuminate each blocked
point by putting a light on the lower side of
one of the squares above it or on the upper
side of one of the squares below it.

Lemma 2.2 A light placed on the lower (up-
per) side of a square s is sufficient to il-
lurninate all blocked points which are below
(above) s.

Proof: We prove the first statement; the sec-
ond proof is similar. Let p be a blocked point
below s at maximum vertical distance from s.
Let ¢ be the projection of p onto the bottom
side of s. Place a light / at q. Suppose there
is some blocked poiut r below s that is not
illuminated by I. Then there must be some
square which intersects line segment rq. Any
square which intersects rq is either above r
contradicting the fact that s is above r or it
also intersects pq contradicting the fact that
s is above p. O

Call asquare a TOP square if the transver-
sal goes through its 1eft and top sides; call it
a MID square if the trau-versal goes through
its left and right sides; call it a BOTTOM
square if the transversal goes through its bot-
tom and right sides. Since we insist on a
proper transversal, the transversal cannot go
through the top left corner or the bottom
right corner of any square. If the transversal
goes exactly through the bottom left corner
then call it a MID square. Since we assume
that the transversal is between 0 and 45 de-
grees these are the only possibilities.

Lemma 2.3 If a square is above a blocked
point then it is either a BOTTOM square or
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a MID square. If a square is below a blocked
point then it is either a MID square or a TOP
square.

Proof: We show the result for squares above
blocked points; the argument for squares be-
low blocked points is similar. Suppose there
is a TOP square s above a blocked point.
Consider the right square 7 for this blocked
point. r must lie entirely to the right of the
line passing through the left side of s other-
wise there can be no blocked point below s.
Thus, since r must intersect the transversal
and since the transversal intersects the top
side of s, r must lie entirely above the bot-
tom side of s. But then it cannot be the right
square of the blocked point. o

Lemma 2.4 A blocked point cannot have a
MID square above it and a MID square below
it.

Proof: Let a be a MID square abave a
blocked point. Suppose b is a MID square
below this blocked point. Since @ and b are
MID squares, they must be vertically sepa-
rable. Hence b cannot be below the blocked
point. a

Lemma 2.5 All the blocked points can be il-
luminated with |2n/3| — 1 lights.

Proof: By Lemmas 2.3 and 2.4 the possibil-
ities for a blocked point is that it has (1) a
BOTTOM square above it and a MID square
below it, or (2) a MID square above it and
a TOP square below it, or (3) a BOTTOM
square above it and a TOP square below
it. Al the blocked points get illuminated
if we place lights either (a) above all TOP
squares and above all MID squares, or (b) be-
low all MID squares and below all BOTTOM
squares, or (c) above all TOP squares and
below all BOTTOM squares. Each square
is either a TOP, MID or BOTTOM square.

One of the sets of TOP, MID, or BOT-
TOM squares contains [r/3] or more of the
squares. If there are [n/3] or more BOT-
TOM squares then all blocked points can be
illuminated with |2n/3] lights using strat-
egy (a). Similarly for the other two cases.
That each blocked point is illuminated fol-
lows from Lemma 2.2. In fact, we can re-
duce the number of lights required by one
by observing that the leftmost and the right-
most squares hit by the transversal cannot
be above or below any blocked point. Thus
we have |2(n —2)/3] < |2n/3] — 1 lights are
sufficient to illuminate all the blocked points.
o

Lemma 2.8 8 lights are sufficient to illumi-
nate the plane minus the blocked points.

Proof: Free space minus the blocked points
can be partitioned into 4 manhattan skylines
each of which can be illuminated by 2 lights
by Lemma 1.1. O

Now the theorem follows fromm Lemmas
2.1, 2.5 and 2.6.

Theorem 2.7 |2n/3| + 1 lights are some-
times necessary and |2n/3| + 7 lights arc
always sufficient to illuminate a set S of n
squares on a transversal.

3 The Algorithm

Positioning the |2n /3] + 7 lights can be done
in O(nlogn) time as follows. First sort the
squares by & — coordinate in O(nlogn) time
and then in linear time find a line transversal
[2]. In O(n) time we can decide which light-
ing strategy to use for the blocked points.
Using the next-element-subdivision method
of Edelsbrunner, Overmars and Scidel [3] we
can compute the set of blocked points above
and below each square in O(nlogn) time.
Placing all of the |[2n/3] — 1 lights can be
done in time proportional to the size of the



next-clement subdivision which is O(n) [3].
The next-element-subdivision also provides
us with the four manhattan skylines. Now
the remaining 8 lights can then be positioned
in O(n) time by Lemma 1.1.

4 Open Problems

How many lights are necessary and sufficient
to illuminate a set of n regular k-gons which
admit a transversal? Here we have shown the
result for k = 4. Czyzowicz, Rivera-Campo
and Urrutia have shown that n + 1 are suffi-
cient to illuminate n homothetic triangles [1].
Fejes-Toth has shown that 2n — 2 lights are
sufficient to illuminate n convex disks which
admit a transversal [4].
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