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Abstract

Given a simple polygon P, the Watchman Route Prob-
lem is to find the shortest closed path in P such that
every point of P is visible from some point on the
path. We consider the generalization of this problem
to the case where more than onc guard is available to
patrol the polygon. We provide an efficient algorithin
for the problem when P is a monotone rectilinear poly-
gon and show that the general version of the problem
is NP-Hard.

1 Introduction

In 1973, Victor Klee posed the problem of determining
the minimum number of stationary guards needed to
visually monitor the interior of any art gallery with n
walls. Chvatal [2] and then Fisk [6] proved that |n/3]
guards are sometimes necessary and always sufficient
when the gallery is a simple polygon. A good survey
of the work done on this problem and its many varia-
tions appears in O’Rourke’s book, Art Gallery Theo-
rems and Algorithms [11].

Variations of the Art Gallery Problem consider mo-
bile guards which patrol along an cdge, diagonal, or
arbitrary line segment of the polygon. In these prob-
lems, one seeks the minimuim number of mobile guards
of the desired type that can cover the polygon, given
that every point in the interior inust be visible from
at least one point on some guard’s patrol route.

If the constraint that a mobile guard must travel
along a single line segment is removed, then deter-
mining the minimum number of guards is trivial (one
always suffices); in this setting, the natural objective
is to minimize the length of a closed path from which a
single guard can see the entire polygon. The resulting
Watchman Route Problem is to provide an algorithm
that computes such a path for each simple polygon
given to it as an input.

Chin and Ntafos gave a lincar-time algorithm for the
Watchman Route Problem in a rectilinear polygon [4]
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and showed that the problem is NP-Hard for polygons
with holes. They also provided an O(n?) time algo-
rithm for the general case of a simple polygon when
an “entry point”, i.e., a point on the boundary that
the route must pass through, is given [5]. The prob-
lem is still open for a simple polygon without an entry
point.

Recently, Nilsson and Wood solved a multi-agent
version of the watchman route problem in spiral poly-
gons [10]. They gave an O(mn?) algorithm to find a
collection of routes for m watchmen patrolling an n-
sided spiral polygon such that the total length of all
routes is minimized.

We feel that minimizing the length of the longest
path traveled by any watchman is a more natural
objective; it conveys the idea that we want to keep
all routes short. With this mini-maz objective, the
longest time that any part of the gallery goes with-
out surveillance is minimized. The min-sum objective
used by Nilsson and Wood models the situation where
security of the gallery is less important than the total
energy expended by the watchmen and may be appro-
priate for the case of robot guards with high operating
costs.

In this paper we consider the general mini-max
multi-agent watchman route problem and show that
it is NP-Hard. We also show that some restricted
versions of it are NP-llard. Finally, we provide a
polynomial-time algorithm for this problem in a mono-
tone rectilincar polygon using “rectangular” visibility.

2 Some NP-Hard Problems

In this section we show that the mini-max multi-agent
watchman route problem and some restricted versions
of it are NP-Iard. The general problem is stated be-
low:

The Mini-Max Multi-Agent Watchman Route
Problem

Instance: A simple polygon P and the number m of
watchmen to be used.

Question: Is there a collection {p;} of m closed paths
such that every point of P is visible to a point on some
path p; and the length of the longest path is < K7



The reduction is from the following NP-Hard [9,11]
problem:

Minimum Star Cover of a Simple Polygon

Instance: A simple polygon P, and a positive integer
m.
Question: s there a decomposition of P into m star-

shaped subpolygous that cover (overlapping is permit-
ted) it.

Remark: Minimum Star Cover (MSC) differs from
the Art Gallery Problem (AGP) in that MSC asks for
the minimum number of stationary guards that can
cover a specific polygon while AGP asks for the min-
imum number of stationary guards suflicient to cover
any n-sided polygon.

Theorem 1 The Mini-Mar Multi-Agent Walchman
Route Problem is NP-1ard.

Proof:  Given an instance of Minimumn Star Cover
for which a cover of size 1 is sought, we create an
instance of the Multi-Agent Watchman Route Prob-
lem with 1 watchimen and the maximum allowed path
length equal to zero.  Clearly, there cxists a set of
m watchman routes with maximum length equal to
zero if and only if m stationary guards can cover the
polygon. A covering of the polygon by star-shaped
components could be obtained in polynomial time by
constructing the visibility polygon of cach point-sized
watchman route. 1

Unless P = NP, we have no hope of obtaining a
polynomial-time algorithm for this probleni. It is rea-
sonable to conjecture that the complexity of the prob-
lem is polynomial in the size of the polygon but ex-
ponential in the number of watchmen. If this were
true, we could solve the problemn in polynomial time
if we limit the number of watchinen a priori to some
constant k. Unfortunately, this isn’t true. We show
below that even the 2-agent version of the problem is
NP-Hard. The reduction is from the following NP-
Complete problem [7]:

Partition

Instance:
values v(s).

A set S ol n objects with positive integer

Question: Is there a partition § = §; U S, such that

Lies, v(8) = Les, v(5)-

Theorem 2
The 2-Agenl Mini-Maz Watchman Route Problem is
NP Hard.
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Proof:  Given an instance of the partition problem,
we generate in linear time a simple polygon with very
narrow corridors whose lengths correspond to the val-
ues v(s). Each corridor has a short recess protruding
from its end at an angle, so a watchman must traverse
the entire corridor to sce into the recess. The longer
path in any pair of watchman routes for this poly-
gon has to have length at least v = 1/23, s v(s). A
longer path whose length equals v exists if and only if
there exists a partition of S satisfying

Z v(s) = Z v(s) = v.

S€ES, SES,y

The desired partition could be obtained from the
watchman routes in a straight-forward manner in lin-
car time. 1

Because the single-agent watchman route problem is
casier in rectilinear polygons, one might suspect that
the multi-agent watchman route problem is also easier
in a rectilincar polygon. But the reduction given above
can be modified to show that even the 2-agent problem
is still NP-Ilard in a rectilinear polygon.

Corollary 3 The 2-agent mini-maz watchman route
problem in a rectilinear polygon is NP-Hard.

3 Rectilinear Monotone Polygons

We showed in the previous section that the general
Multi-Agent Mini-Max Watchman Route Problem is
intractable. We also showed that the problem remains
intractable when the number of watchmen is limited
to two, even when the polygon is constrained to be
rectilinear.

On the other hand, we mentioned previously that
the Multi-Agent Watchman Route Problem can be
solved cfficiently in a spiral polygon. In an cffort to
find other special cases of the problem that admit effi-
cient solutions, we turn now to the case of a rectilinear
monotone polygon.

3.1 Preliminaries

A polygon P is a rectilinear monotone polygon (RMP)
if its internal angles are all 90 or 270 degrees and it
can be aligned so that all its edges are parallel to the
x-axis or the y-axis and for every horizontal line A that
intersects P, the intersection hN P is a connected set.
We assume without loss of generality that any such P
has the orientation just described, i.e., it is monotone
with respect to the direction of the y-axis. We can
represent P by a sct of two rectilinear chains each of
which is monotone in the direction of the y-axis.
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Now we summarize froin [3] how to find the shortest
watchman route for a single watchman in a rectilinear
monotone polygon. We usc this result to solve the sub-
problems that arise in the multi-agent version of the
problem, in addition, we use some of their terminology
in describing our algorithm.

A horizontal edge on the boundary ofP is a top edge
(bottom edge) if the interior of P lies below (above) it.
Let T(P) be the highest bottom edge of P and let
B(P) be the lowest top edge of P. Note that Pr(P),
the portion of P above T(P), and Pp(P), the por-
tion of P below B(P), arc each star-shaped. Follow-
ing Chin and Ntafos, we call the kernel of Pr(P) the
top kernel of P, and we call the kernel of Pp(P) the
bottom kernel of P.

Chin and Ntafos show that the shortest watchman
route in a RMP traverses back and forth along a short-
est path between the top kernel and the bottom kernel.
They can find such a path in O(n) time in a triangu-
lated polygon. The recent lincar-time triangulation
algorithm of Chazelle [1] makes the overall complexity
linecar.

To make the multi-agent version of this problem
tractable, we place a stronger requirement on the
watchman than that each point of /> has to be scen
by at least one watchman. We require that cach point
must be seen by at least onec watchman according to
the following definition of visibility: two points p and
q in P are rectangularly visible to one another if the
unique rectangle with diagonal 5 and with sides paral-
lel to the x and y axes is fully contained in P. Rectan-
gular visibility is a natural requirement in a rectilinear
polygon and has appeared in the literature before; for
instance, Keil (8] uses rectangular visibility in his algo-
rithm for finding the minimum number of stationary
guards needed to guard a rectilinear monotone poly-
gon. Wood [12] gives a more complete discussion of
rectangular and other alternative forms of visibility.

We define the traversed region of a watchman route
r to be the subpolygon of I’ between the horizontal
lines through the highest and lowest points of r. By
monotonicity, every point in the traversed region of a
watchman route is visible from a point on that watch-
man route with the same y-coordinate.

3.2 Properties of Optimal Watchman Routes

In this section we characterize optimal watchman
routes so that we can find them efficiently. The im-
portant qualities of an optimal sct of watchman routes
are summarized in the following propositions; most of
these propositions depend on the fact that we arc using
rectangular visibility.

Proposition 1 In an optimal sct of walchman roules
for a RMP P, each edge of the boundary of P is scen
in its entirely by at lcast onc walchman.

Proposition 2 In an optimal set of watchman routes,
the routes can be adjusted so that everything scen
by a route above ils travcrsed rcgion can be scen
from the poini(s) of the route having the mazimum
y-coordinate. Similarly, everylhing scen below the tra-
versed region of a route can be seen from the poini(s)
of the route having the minimum y-coordinale.

Proposition 3 In an optimal sct of walchman roules
the traversed regions of any lwo roules are disjoind.

Proposition 4 The walchman routes in an oplimal
sel of m walchman roules can be adjusted so that for
cvery pair of walchman roules vy and viyy in a sc-
quential ordering of the walchman routes from top lo
bottom, the region of I’ belween the traversed region of
ri and the traversed region of vy can be completely
scen from roules vy and viyy. Also, the region of P
above 7y can be seen from vy and the region below r,,
can be seen from r,,.

Proposition 5 In bclween two scquential traversed
regions, the left and right chains of P have the fol-
lowing structure from top lo botlom: the left chain
consists of a staircase chain monolonically increasing
in z, a vertical transilion edge, and a staircase chain
monotonically decrcasing in x; the right chain consists
of a staircase chain monolonically decreasing in z, «
vertical transition edge, and a slaircase chain mono-
tonically increasing in .

Proposition 6 In belween two scquential routes, no
edge that is below the wverlical transition cdge of ils
chain can be seen from above and no edge above the
lransition edge can be scen from below.

Proposition 7 The region of P belween two sequen-
tial watchman roules can be partitioned, inlo a region
scen from above and a region scen from below, either
by a linc segmenl connecling two vertices on opposile
chains of P which are (rcelangularly) visible to one
another or by a horizonlal scgment from a verlez of P
to the opposite chain.

3.3 The Algorithin

We make two important conclusions from the long
string of propositions given in the previous section.
First, an optimal set of m watchman routes in a RMP
P can be found by finding an “optimal” partition of P
into m disjoint pieces and then constructing the short-
est single-agent watchiman route in each picce. And



second, each of the subpolygons arising from a valid
set of m — 1 cut edges is cither a monotone reetilinear
polygon or can be made into one by replacing each of
its non-horizontal cut edges by two edges of the rect-
angle the cut edge is a diagonal of. This replacement.
has no effect on the length of the shortest watchman
route that sees all the original edges of the subpolygon.

The discussion above suggests that if we solve a
number of single-agent. RMP watchman route prob-
lems, we can use the results to find an optimal set
of watchman routes for several agents. This idea lets
us formulate the problem recursively and solve it effi-
ciently using Dynamic Progranning.

The recursive formulation follows. Denote the high-
est horizontal edge of P by ep. Order the valid
cut edges e; lexicographically according to the y-
coordinates of their left and right endpoints. Define
a partial order < on the valid cut edges as follows:
€j < € il the y-coordinate of each endpoint of cj is
less than or equal to the corresponding y-coordinate
of ¢;. Let V denote the mini-max value of an optimal
sct of m watchman routes. For any pair of edges ¢;
and e; with ¢; < ¢;, denote the length of the shortest
single-agent. watchiman route in the RMP determined
by e; and e; by Vi(ei, ¢;). Also denote by V(c;, k) the
minimax value of an optimal set of & watchman routes
in the portion of P below the cut ¢;. Then the optimal
value V can be expressed as

V = min{max{V,(er, ¢;), V(ci,m — D}}.

The term V(eg, m—1) can also he expressed recursively
as

Ve, k) = m<in {max{Vi(es,e;), V(ej, k — 1}}.
ej<¢c;

The first step of the algorithm precomputcs
Vi(ei, e5) for each pair (c;,e;) with e;j < e;. Since
there are O(E) valid cut edges, where E is the size
of the (rectangular) visibility graph of P, we need to
solve O(£?) subproblems and store the results in a
table of size O(E?). The straight-forward approach
to this initialization step takes O(n) time to calculate
cach entry in the table. A nore careful analysis, how-
ever, enables us to compute the entire table in time
O(En?).

After initializing the table for V;(e;, ¢;), we need to
compute a one-dimensional table of size O(E) corre-
sponding to V(ei, k) for cach k < m. By comput-
ing the tables sequentially for & from 2 to m — 1, we
can compute cach entry in O(F) time by comparing
O(E) numbers which are obtained in constant time
from the previously computed tables. Thus the total
time needed to construct the tables and evaluate V
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is O(E?m). Once we have calculated V, we know an
optimal set of 1 — 1 cut edges and can easily compute
an optimal sct of 1 watchman routes.
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