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Abstract

A set of n distinct points in the plane defines (;‘) lines
by joining each pair of distinct points. The median
slope of these O(n?) lines was proposed by Theil as
a robust estimator for the slope of the line of best
fit for the points. We present a simple randomized
algorithm for selecting the k-th smallest slope of such
a set of lines which runs in expected O(nlogn) time.

1 Introduction

Consider a set of n distinct points in the plane.
These points define (g) lines by joining each pair of
distinct points. The slope selection problem is that
of determining the k-th smallest slope among these
lines. This problem was posed by Shamos [12]. It was
subsequently considered by Cole, Salowe, Steiger, and
Szemeredi (3], who discovered an optimal (determin-
istic) O(nlogn) algorithm for this problem. Their
algorithm relies on two ingenious but complicated
techniques: Cole’s improvement of Meggido’s tech-
nique for parametric search based on parallel sorting
algorithms and an algorithm for computing approxi-
mate ranks of elements in an array.
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We present a simple O(nlogn) expected time ran-
domiged algorithm for the slope selection problem.
In the full paper [5], we also describe an implemen-
tation of the algorithm, and demonstrate the algo-
rithm’s practical efficiency. While our time bound is
theoretically weaker than the deterministic bound of
[3], we feel that our algorithm will be of greater prac-
tical interest, since (1) it is quite easy to implement,
relying only on simple modifications of mergesort,
(2) the constants of proportionality hidden by the
asymptotic notation are small, and (3) the O(nlogn)
expected running time occurs with extremely high
probability on any input of size n. The algorithm
always terminates giving the correct output in worst
case O(n?) time (although the probability of achiev-
ing this worst case is extremely small for large n).

The slope selection problem is of interest in statis-
tical estimation. Given a set of n points which are hy-
pothesized to lie on a straight line, the median slope
of the lines determined by these points was proposed
by Theil as a robust estimator of the slope of the line
fitting the points [14]. The advantage of this method
over mean-based methods such as least squares is its
lower sensitivity to outliers. More formally, the break-
down point of an estimator is roughly defined to be
the percentage of outlying data points that may cause
the estimator to take on an arbitrarily large aberrant
value. (See [6] or for an exact definition.) It can
easily be shown that the Theil estimator has a break-
down point of 1 — \/1/2 = 29.3%. Other common
estimators include the Ly (least squares) estimator,
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the L, éstimator, and the Lo, (Chebyahev) estimator.
These estimators can be computed in O(n) time (see
[4,9,10]) bt each has a breakdown point of séro be-
cause a single outlier can bias the estimator arbitrar-
ily. The liné minimizing the median of the squared
residuals, least median of squares (LMS) [11], was
shown to be computable in O(n?) time and O(n?)
space in [13]; and the space bound was improved to
O(n) in [8]. The breakdown point for LMS is 50%.
Although this is better than the Theil estimator, the
coniputation time is significantly larger. Our motiva-
tion for studying this problem arises from the prob-
lem in coniputer vision of fitting a line to a set of
points in an image.

Our algorithm is based on the subtasks of counting
and sampling from a set of inversions in a list. In Sec-
tion 2 we discuss the relevance of inversion counting
and random sampling to the slope selection problem
and present algorithms for these problems. In Sec-
tion 3 we discuss how to apply random sampling to
refine the search for the desired slope. We present
the complete algorithm in Section 4.

2 Inversion Counting and Sampling
Let (ai, b;), for 1 < 1 < n, denote a set of n dis-
tinct points in the real plane. Each of the (") distinct
paxrs of pdmts determines a line. We wish to deter-
mine the k-th smallest slope (the median slope being
a special case) If multiple lines have the same slope,
then these slopes are counted multiply. We make the
convention that a vertical line has the largest possi-
ble slope, +oo. As observed in [3] it seems to simplify
the problem to describe it in its planar dual form, by
transforming points into lines and vice versa. Con-
sider the transformation that maps the point (a,b)
to the line y = az — b. For two points (a;, b ;) and
(aj,b;) the corresponding dual lines y = a;z — b;
and y = a;z — bj, respectively, intersect at the z-
coordinate z = (b; — b;)/(a; — a;). Thus the slope
of the line passing through points (a;, b;) and (a;, b;)
is equal to the z-coordinate of the intersection point
of the two corresponding dual lines. We make the
convention that if a; = a; then these lines intersect
at £ = +oo. (By a similar derivation it follows that
the y-coordinate of the intersection point of the dual
lines is just the négation of the y-intercept of the line
determined by the original points. Thus this same
algorithm can be applied to compute the median y-
intercept of the set of lines determined by all pairs of
points. Selection of parameters for other line repre-

sentations can be derived by appropriate use of other
dual transformations.)

We have now reduced the slope selection problem
to the following dual form. Given a set of n lines
y=a;3—b;, 1 <1< n, determine the k-th smallest z-
coordinate among the (") intersection points of these
lines. As before, multiple intersection points (where
tlitee of more lines intersect) are counted multiply.
We use the term intersection ordinate to denote the
z-coordinate of the intersection point between two
lines.

Our basic approach is to maintain two z-values,
Zio and zpi, —00 < Z1, < zpe < +oo. Let (zo, 1)
denote the half-open, half-closed interval of points z,
Zio < £ < zpi. Let I(zy,, zp;] denote the set of in-
tersection ordinates in this interval. (Actually this is
a multi-set because multiple equal ordinates are pos-
sible.) We will maintain the invariant that the k-th
smallest intersection ordinate is in I{#j,, zp;|. Ini-
tially z;, = —0o and z,; = +0o. Note that initially
I(z15, zpi] includes all (';) intersection ordinates be-
cause, by convention, no two lines intersect at —oo.

The algorithm operates in a series of stages. At
the start of each stage the k-th smallest intersection
ordinate lies within an interval (zi,, #x;]. We con-
tract the interval into a smaller interval by randomly
sampling from the set of intersection ordinates. Us-
ing this sample, we can find a subinterval {2}, 2} ;]
which contains the k-th smallest ordinate. We can
choose this subinterval in such a way that, with high
probability, the number of intersection ordinates in
the subinterval is only O(1//n) times the number of
ordinates in the original interval (note that n here is

.the number of initial data points, not the number of

ordinates in the interval). Since the number of inter-
section ordinates in the initial interval is O(n?) it fol-
lows that (with high probability) after two stages the
number of remaining intersection ordinates in the in-
terval will drop to O(n). At this point we will be able
to simply enumerate all of the remaining ordinates in
O(nlogn) time and use any standard selection algo-
rithm to find the desired element. Each stage will
take O(nlogn) deterministic time, but the number
of stages may vary due to randomization.

In order to describe the algorithm, we have to de-
scribe (1) how to count the number of intersection
ordinates in an interval efficiently, (2) the sampling
procedure, and (3) the strategy for selecting succes-
sive subintervals. The first two items are discussed
below and the third item is discussed in the next sec-
tion. To simplify the presentation, we will make the



following general position assumptions: (a) no two
intersection ordinates are equal to one another, and
(b) no two lines intersect the vertical lines z = z, Or
z = x),; at the same y-coordinate. Given the second
assumption, it does not matter whether we consider
interval (x5, zn;] to be open or closed, but we retain
this notation because in the full paper [5] we discuss
how to augment the algorithm to handle these degen-
eracies properly.

Counting the number of intersection ordinates in
an interval is easily reducible to the task of deter-
mining the number of inversions in a list. Define an
inversion in a list y;, y2, . . ., Y, to be a pair of values,
¥ and y; where 7 < j but y; is greater than y;. Index
lines in order according to the y-coordinate at which
they intersect the right end of the interval, z = z,.
Label each line with the y-coordinate at which it in-
tersects the left end of the interval, z = z;,. Con-
sider the resulting list of labels in index order. Ob-
serve that two lines intersect within the interval if and
only if the relative order of their intersection with the
left and right ends of the interval are reversed, which
means that there is an inversion in the resulting list
(see Fig. 1).

The number of inversions can be counted in
O(nlogn) worst-case time, using a simple modifica-
tion of mergesort. Once the count, say C, is known, a
sample of size n (with replacement) can be generated
in O(nlogn) time by (1) generating a collection of n
random integers in the range from 1 to C (allowing
duplicates), (2) sorting this collection of integers, and
(3) running a slightly modified version of the counting
algorithm. The algorithms for counting and sampling
inversions are not described in this extended abstract
due to space limitations..

3 Contracting the Interval

In this section we introduce the necessary
probability-theoretic groundwork on which the algo-
rithm is based. We omit the proofs of the two lem-
mas of this section, which can be found in [5]. Recall
that our task has been transformed to that of com-
puting the k-th smallest intersection ordinate in the
set I(zi,, zn;]. (Note that the value of k may not
be the same as the algorithm’s original input.) The
set I(zi,, zn;] may contain O(n?) elements, but we
have an O(nlog n) procedure that counts the number
of intersection ordinates in the set, and we have an
O(nlog n) procedure which samples n intersection or-
dinates (with replacement) at random. In this section
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we show how to use the two procedures to contract
the interval into a smaller subinterval (z},, z},] which
still contains the k-th smallest intersection ordinate.

We assume that we have applied the counting pro-
cedure of the previous section to determine the num-
ber of intersection ordinates C in I (%10, Zhi], and that
C > n. (The case when C is smaller will be dis-
cussed in the next section.) We begin by apply-
ing the sampling procedure of Section 2 to sample
(with replacement) a subset of n intersection ordi-
nates from I(z,, z1;]. Let S denote this subset. Let
z* denote the (unknown) k-th smallest intersection
ordinate in I(z,, Thi], and let k* denote the near-
est integer to kn/C. Because the sample is random,
the k*-th smallest element in the sample should be
“close” to z*. More precisely, let S[1],5(2], ..., S[n]
denote the elements of the sample, sorted in increas-
ing order. For some positive constant ¢ (whose exact
value is discussed in the full version of the paper) we
define k;, and ky; to be indices of the ordinates in the
sorted sample which lie at least ¢ standard deviations
on either side of the mean:

[l—cﬁ - ti—;{J and kp; =

ko= |G 2

Eal

(Notice that we do not use the exact value of the
standard deviation of /npq but the upper bound of
Vn/2. As we show in the full paper [5], the use of
this bound provides more robust performance when
p is close to zero or one.) If kj, > 1 and kp; < n,
then define z}, = S[ki,] and z}; = Slkni]- ¥ kipo < 1
then let z;, = z;, and if kp; > n let zh; = Zpi. The
process is roughly illustrated in Fig. 2. The following
lemma says that, given any prespecified probability
bound, we can select a large enough sample range
such that this range contains the k-th smallest ele-
ment, z*, with at least the desired probability. Of
course we face a tradeoff since as t increases the size
of the bounding interval increases, and hence the run-
ning time of the algorithm also increases.

LEMMA 3.1 Let I(zi,, zn;| be the set of C > n in-
tersection ordinates between zy, and zn; from which
we wish to select the k-th smallest intersection or-
dinate, z*. Let S be a random sample of n inter-
section ordinates from I(z,, Zhi], and let p = k/C.
For any € > 0, we can select t such that for all suf-
ficiently large n the probability that the k-th small-
est element of I(zi,, zp;] lies within the subinterval
I(z},, z},;] is at least 1 — €. Furthermore, as a func-

tion of ¢, t € O(\/In(1/¢)).
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In order to complete the probability theory needed
to justify our claims on the algorithm’s running time,
we need to consider the number of intersection ordi-
nates that remain to be processed in the subinterval
(#1,s Zhi]- Because the subsample between zj, and
z},; represents essentially t\/n elements of the n el-
ements sampled, we would expect that of the orig-
inal C elements in I(z,,, z);], a fraction of about
ty/n/n = t/\/n would lie in the subinterval. The fol-
lowing result states that for any constant probability
bound, there are asymptotically O(Ct//n) ordinates
within the subinterval with at least this probability.
The constant on the asymptotic bound depends on
the probability bound.

LEMMA 3.2 Assume the same hypotheses as in
Lemma 3.1. Given any ¢ > 0 and any constant
d > t, for all sufficiently large n the probability that
more than dC/\/n elements of I(zio,zn:| lie within
the open subinterval (z],, z},;) *s at most e.

4 Complete Algorithm

As we mentioned earlier, the algorithm consists
of a series of stages. At the start of each stage we are
given an interval (z;,, zp;] within which we seek the
k-th smallest intersection ordinate. We are also given
a count C of the number of intersection ordinates in
this interval, and we assume that k < C.

If C is sufficiently small, in particular, if C < ¢n,
for some constant ¢ > 1, we enumerate all inversion
ordinates in the interval. We then use Hoare’s O(n)
expected-time selection algorithm (using a randomly
chosen pivot element) [1] to determine the k-th small-
est value.

If, on the other hand, C > cn, we apply the sam-
pling procedure described earlier to select a sample
S of n intersection ordinates. We sort these intersec-
tion ordinates, and we set z;, to be the kj,-th smallest
and z},; to be kp;-th smallest elements from the sam-
ple, where k;, and kj; were defined in the previous
section. By Lemma 3.1, with high probability, we
expect the k-th smallest intersection ordinate to lie
within I(z],, z};]. It is an easy matter to apply the in-
version counting procedure to ascertain whether the
k-smallest ordinate occurs within I(z},, z};], as ex-
pected, or to the right or left of this subinterval. If
it lies within this central subinterval, we invoke the
algorithm recursively on I(zj,, z};], and if not then
we apply the algorithm to either the left subinter-
val I(zio, zj,] or the right subinterval I(z};, zn:| as
appropriate. The overall algorithm follows from this

description. We omit details from this extended ab-
stract.

In order to analyze the running time of this pro-
cedure notice that the only probabilistic aspect of
the algorithm is the number of stages which the al-
gorithm performs (the number of recursive calls to
Select_Slope). Let T'(n,C) denote the expected run-
ning time of the procedure for n lines on any interval
(%i0) Zhi] containing C intersection ordinates. We de-
fine a stage of the procedure to be successful if the
k-th smallest intersection ordinate is located in the
central interval (z],, z};] (as expected), and if this
central interval has no more than dC//n elements,
where d is a constant to be defined later. As we men-
tioned in Section 2, the running time of each stage
can be bounded above by enlogn for some constant
e. If all stages are successful, then the running time
of the algorithm is T'(n, ('2‘)), where T'(n, C) is given
by the recurrence

T(n,C) < enlogn ifC<ecn
T(n,C) < T (n, %‘;"-') +enlogn otherwise.

After k successful stages, the remaining number of
intersection ordinates is at most

(L)k (") < if,g-(k/z)_

Vn 2) 7 2

Thus, if ¢ and d are chosen such that d?/2 < c, then
after only two successful stages, the remaining num-
ber of intersection ordinates falls below cn. From
Lemmas 3.2 and 3.1, by adjusting the parameters d
and t (which in turn constrain the value of ¢) we
can make the probability of a successful stage ar-
bitrarily high. Because success is independent from
one stage to another (depending only on the random
number generator) we can select ¢ and d sufficiently
large so that the algorithm terminates within two
stages with arbitrarily high probability (while simul-
taneously slowing the algorithm down by a constant
factor).

This suggests the following mode of operating the
algorithm. By selecting ¢ and d such that the prob-
ability of success of any one stage of the algorithm
is very high, say 0.99, we are assured that after
two stages the algorithm terminates successfully with
very high probability, say 0.98. In the complete pa-
per we discuss the choice of these parameters for our
implementation. Once ¢ and d have been selected, ¢
is selected so that ¢ > d?/2. With high probability,



all stages will then be successful and the running time
will be O(nlogn).

Even if all stages are not successful, the ezpected
running time of the procedure is still O(n log n), pro-
vided that d and ¢ are chosen so that the probability
p of a successful stage is bounded away from zero.
If the stage is not successful, then we recurse on ei-
ther the left or right subinterval. To obtain an upper
bound we assume that in each unsuccessful stage no
ordinates at all are eliminated (which is pessimistic,
since at least O(y/n) sample points will always be
eliminated). Hence, the running time of the algo-
rithm is given by the recurrence

E(n,C) < enlogn, if C<cn
E(nC) < p5(n 22) +(-nBm0) +
enlogn, otherwise.

It is straightforward to prove by induction that
E(n, C) satisfies

logC
b plog(\/'—t/d)) '

Since C is O(n?) the last factor is O(1). Thus the
algorithm’s expected running time is O(n log n).

E(n,C) < (enlog n) max (

5 Concluding Remarks

We have described a randomized O(nlogn) ex-
pected time algorithm for selecting the k-th smallest
line slope determined by all pairs of n points in the
plane. Our emphasis has been on designing an algo-
rithm which is provably efficient (with very high prob-
ability), which handles degenerate cases correctly,
and which has a simple and efficient implementation.
In much the spirit of Bentley’s work on the traveling
salesman problem [2] we have experimented exten-
sively with the implementation in order to establish
its efficiency and robustness. (See [5] for a detailed
discussion.)
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Figure 2: Illustration of the sampling procedure.



