Bicriteria Shortest Path Problems in the Plane
(extended abstract)

Esther M. Arkin * Joseph S. B. Mitchell † Christine D. Piatko ‡

1 Introduction

There have been many algorithms in computational geometry that produce optimal paths according to some notion of "shortest". The problem of finding shortest (Euclidean or $L_1$ length) paths among obstacles in the plane is well-studied [1,8], and there have been recent works also on the problem of finding shortest paths according to other notions of "length": link distance [10,11], weighted length [9], and minimum-time [3].

In this paper we study various bicriteria path problems in a geometric setting. We consider several pairs of criteria for planar paths, including: total turn and path length, path length measured according to two different norms ($L_p$ and $L_1$), and path length within two or more classes of regions. As is the case for the general bicriteria path problem on graphs, many of these problems are NP-complete. In addition to proving these hardness results, we give pseudo-polynomial time algorithms for some cases.

In a closely related paper, [2], we present a polynomial-time approximation algorithm for computing bicriteria paths within a simple polygon, according to the two criteria of Euclidean length and link distance. We compute (approximately) the shortest path from $s$ to $t$ that uses only $k$ links.

2 Review of Bicriteria Paths in Graphs

First, we review the general result for bicriteria paths in graphs [4, p. 214], which forms the basis for many of our constructions.

Theorem 1 In a graph $(V,E)$ with positive integer weights $w_i$ and positive integer lengths $l_i$ on its edges, and two distinguished nodes $s$ and $t$, the problem "Does there exist a path from $s$ to $t$ with weight $\leq W$ and length $\leq L"$ is NP-complete.

Proof. We use a reduction from Partition. In the Partition problem we are given a set $N$ of items with positive integer weights $a_i$, and ask "Does there exist a subset $S \subset N$ such that $\sum_{i \in S} a_i = \frac{1}{2} \sum_{i=1}^n a_i$?" Consider a graph with $n+1$ nodes, with $s = v_1$ and $t = v_{n+1}$. Draw two edges joining node $v_i$ to $v_{i+1}$, a "top" edge with length 0 and weight $a_i$, and a "bottom" edge with length $a_i$ and weight 0. Set $L = W = \frac{1}{2} \sum_{i=1}^n a_i$. A path of length $\leq L$ and weight $\leq W$ on this graph yields a partition into top and bottom edges that solves the Partition problem.

The above proof is not affected if we add a constant $C$ to the lengths (weights) of the top and bottom edges joining $v_i$ and $v_{i+1}$, while adding $C$ to $L$ ($W$). What is important is that the difference between the two lengths (weights) equals $a_i$.

Partition is a weakly NP-complete problem, so it is not surprising that there are pseudo-polynomial time algorithms for this bicriteria problem. In fact, the Bellman-Ford dynamic programming method for shortest paths [7, p. 74] provides a polynomial time algorithm for the equal-length (or equal-weight) version. If the lengths or the weights of the edges are bounded, we can solve the problem in polynomial time, by breaking the arcs into "unit" length or weight segments. This implies a pseudo-polynomial time algorithm for the general bicriteria problem on graphs.

For correctness we must note that the constructions presented in this paper sometimes require irrational coordinates. Since irrational coordinates cannot be generated in polynomial time, our reductions, if done precisely, are not polynomial. However, since there are rational points arbitrarily close to irrational points, we can choose rational coordinates in polynomial time such that the chosen points will differ by at most $\epsilon$ from the desired ones. Usually we will be connecting $n$ gadgets. We can choose an $\epsilon$ such that $n\epsilon$ is small enough so that the sum of small differences in length over all the gadgets will not affect the optimal solution. For brevity in this abstract, we will not indicate all the perturbations that are necessary.

3 Total Turn and Length

One version of the geometric bicriteria path problem in the plane asks us to find a path from $s$ to $t$ that minimizes the length and total turn of the path. (The total turn of a path is the sum of the absolute values of changes in $\theta$ over the path.)

Any pareto-optimal path for total turn and length
must lie on the visibility graph. (A pareto-optimal path is one that is not improvable in one of the two criteria without increasing the other criteria.) If not, we can shortcut along a chord of the path, improving both the length and the total turn. A corollary of this is that in a simple polygon the (unique) shortest path is the only pareto-optimal path. For polygons with holes however, we have the following result:

**Theorem 2** The problem “Does there exist a path from s to t, in a polygon with holes, whose length is ≤ L and whose total turn is ≤ θ?” is NP-complete.

**Proof.** The proof is based on the graph construction used above for bicriteria paths in graphs, with added constants so there are no zero lengths or weights to the edges. We again use a reduction from Partition, scaled so that each $a_i$ is less than $\pi$ (and thus may not be integer). We construct a planar graph with $n + 1$ nodes, with $s = v_1$ and $t = v_{n+1}$. We draw two “edges” from each $v_i$ to $v_{i+1}$, one with length $\lambda + a_i$ and total turn $2\pi$ and one with length $\lambda$ and total turn $2\pi + a_i$, where $\lambda$ is a constant. The claim is that the first edge can be drawn in the plane with three bends, with length $\lambda + a_i$ and turn $2\pi$, and the second edge can be drawn with 3 edges, with total length $\lambda$ and total turn $2\pi + a_i$ (see Figure 1). We draw a corridor of constant length $K$ (where $K$ is bigger than any $\lambda + a_i$) so that consecutive gadgets will not overlap.

Our obstacles will be the complement of the edges we have drawn. Thus, a partition will exist if and only there exists a path with total turn ≤ $2\pi n + \frac{1}{2} \sum_{i=1}^{n} a_i$ and length ≤ $n\lambda + \frac{1}{2} \sum_{i=1}^{n} a_i$. □

However, the problem is not strongly NP-complete:

**Theorem 3** There exists a pseudo-polynomial time algorithm for the problem of minimizing total turn and length.

**Proof.** We know the optimal path must lie on the visibility graph, so we can map visibility graph edges to a graph $G$. Each visibility graph edge $e$ between $u$ and $v$ will be split into two directed edges. The directed edge from $u$ to $v$ is changed into an edge between the nodes $u_{e\text{-out}}$ and $v_{e\text{-in}}$. Similarly, the edge from $v$ to $u$ becomes an edge between $v_{e\text{-out}}$ and $u_{e\text{-in}}$. Both edges are given length $|u,v|$ and weight (corresponding to turn) zero.

Assume the visibility graph (VG) edges are ordered around the vertex $v$. Assume that the extensions of the visibility graph edges are also ordered around $v$. For each VG edge $e$ directed into $v$ we find the VG edge $f$ directed out of $v$ that is clockwise to $e$’s extension. We connect $v_{e\text{-in}}$ to $v_{f\text{-out}}$ and give the new edge a weight $\theta$, where $\theta$ is the amount of turn from $e$ to $f$, and length 0. Similarly, we connect $v_{e\text{-in}}$ to $v_{f\text{-out}}$ where $e$ is the VG edge counterclockwise to $e$’s extension.

If the $n$ obstacle vertices have integer coordinates (of maximum size $N$), the smallest angle formed by any pair of VG edges is $\theta_{\text{min}} = \frac{\pi}{2n}$, for a constant $c$. We define $\Delta \theta = \frac{\max}{2n}$, and round all weights $\theta$ to integer multiples of $\Delta \theta$. Since no paths of interest have more than $n$ turns, we can argue that measuring angles to within the resolution $\Delta \theta$ is sufficient for solving the bicriteria path problem. By replacing an edge whose weight is $k \cdot \Delta \theta$ by $k$ edges with each unit weight, and applying the dynamic programming algorithm of Bellman-Ford on the graph $G$, we can find an optimal solution within time $O((nN^2E)^3)$.

4 Minimizing Both $L_p$ and $L_q$ Length

Suppose we would like to minimize the $L_p$ and $L_q$ lengths of a path from $s$ to $t$ simultaneously. We can show that this problem is also NP-hard. We give a proof for the $L_1$ and $L_2$ norms. This proof can be generalized to any two $L_p$ and $L_q$ norms (where $p \neq q$). It can also be generalized to two convex distance functions that are not similar under scaling.

**Theorem 4** The problem “Does there exist a path from $s$ to $t$ whose $L_1$ length is ≤ $A$ and whose $L_2$ length is ≤ $B$?” is NP-complete.

**Proof.** (Sketch.) We use a reduction from Partition, similar to the one for the bicriteria path problem in graphs. First, we make a gadget that corresponds to the nodes $v_i$ and $v_{i+1}$ and the 2 edges between them (Figure 2). We start with an isosceles right triangle with base $b_i$, height $b_i$ and hypotenuse $c_i$. We add a skinny vertical “hump” of total length $x_i$ to the hypotenuse. (Note that the lengths we refer to here will be off by a small amount. By adding the vertical “hump” we take a small amount away from the length of $c_i$, and the hump cannot be perfectly vertical. However, such differences can be made small enough so that they do not affect the structure of the proof.) The exact values of $b_i$ and $x_i$ will be chosen later. The $L_2$ length of $c_i$ is $\sqrt{2} b_i$, and the $L_1$ length of $c_i$ is $2b_i$. There will be only 2 paths from $v_i$ to $v_{i+1}$. The upper path, following the hypotenuse and the hump, has $L_2$ length $x_i + \sqrt{2} b_i$, and $L_1$ length $x_i + 2b_i$. The lower path has $L_2$ and $L_1$ length $2b_i$. We choose $x_i$ so that the upper path is longer than the lower path by $a_i$ (the value of the $i$th item in the Partition problem) in the $L_1$ norm and shorter by $a_i$ in the $L_2$ norm. We want $x_i = (2b_i + a_i) - 2b_i$, that is, $x_i = a_i$. We also want $\sqrt{2} b_i + a_i = 2b_i - a_i$, which implies we should choose $b_i = (2 + \sqrt{2}) a_i$. We connect $n$ of these gadgets along a diagonal line, and take as obstacles the complements of the paths drawn. □
5 Travel Through Multiple Regions

Suppose the plane is partitioned into red and blue regions. We can ask for the path from s to t that minimizes travel in both the red and blue regions. For any \( L_p \) metric this problem is NP-hard. To prove this we first show a special version of the Knapsack problem is NP-complete. The reduction for multiple regions will mimic this proof.

In Fractional Knapsack we are given a set \( N \) of items, each with a value \( v_i \) and weight \( w_i \), and bounds \( V \) and \( W \). A solution to Fractional Knapsack, will be a set \( S \subseteq N \) of whole items and a set \( F \subseteq N \) of fractional items, with \( S \cap F = \emptyset \), such that the knapsack has value \( \geq V \) and weight \( \leq W \). Let \( f_i \) be the fraction of item \( i \) taken, i.e. \( 0 \leq f_i \leq 1 \). The value of a knapsack is the sum of the value of whole items taken, plus the fractional weight of fractional items taken, i.e. \( \sum_{i \in S} v_i + \sum_{i \in F} f_i \cdot w_i \). Alternatively, we can think of the value of a knapsack as the value of items completely taken plus any remaining capacity, i.e., \( \sum_{i \in S} v_i + (W - \sum_{i \in S} w_i) \). The weight of the knapsack is just the weight of whole items plus the appropriate fraction of the weight of fractional items, i.e. \( \sum_{i \in S} w_i + \sum_{i \in F} f_i \cdot w_i \).

Theorem 5 The Fractional Knapsack problem, “Does there exist \( S \subseteq N \) and \( F \subseteq N \) such that the value of \( S \cup F \) is \( \geq V \) and the weight of \( S \cup F \leq W ? \)” is NP-complete.

Proof. We use a reduction from Partition. Let \( W = \frac{1}{2} \sum_{i \in N} a_i \). For item \( i \), let \( w_i = a_i \) and let \( v_i = 2(W + 1) \cdot a_i \). Let \( V = 2(W + 1) \cdot \frac{1}{2} \sum_{i \in N} a_i \). Suppose we are given a solution to Fractional Knapsack. We know the weight of the knapsack is \( \leq W \), i.e. \( \sum_{i \in S} a_i + \sum_{i \in F} f_i \cdot a_i \leq W = \frac{1}{2} \sum_{i \in N} a_i \). The value of the knapsack is \( \geq V \), i.e.

\[
\sum_{i \in S} 2(W + 1) \cdot a_i + \sum_{i \in F} f_i \cdot a_i \geq (W + 1) \sum_{i \in N} a_i = V.
\]

Since \( \sum_{i \in F} f_i \cdot a_i \leq W \) we can subtract \( \sum_{i \in F} f_i \cdot a_i \) from the left and \( W \) from the right to get

\[
2(W + 1) \sum_{i \in S} a_i \geq (W + 1) \sum_{i \in N} a_i - W
\]

\[
\Rightarrow \sum_{i \in S} a_i \geq \frac{1}{2} \sum_{i \in N} a_i - \frac{W}{2(W + 1)}.
\]

We know that \( \frac{W}{2(W + 1)} \) is a fraction, and in particular it is less than \( 1/2 \). The sum on left hand side of the equation is an integer. The sum on the right hand side of the equation is either an integer or an integer plus \( 1/2 \). In either case, since the fraction \( \frac{W}{2(W + 1)} \) is small enough, we know that \( \sum_{i \in S} a_i \geq \frac{1}{2} \sum_{i \in N} a_i \). We already know the weight of the knapsack implies that \( \sum_{i \in S} a_i \leq \frac{1}{2} \sum_{i \in N} a_i \). Thus, the Fractional Knapsack solution solves Partition. \(\square\)

We can now use a similar proof technique to show that minimizing travel through two regions simultaneously is NP-complete.

Theorem 6 The problem “Does there exist a path from \( s \) to \( t \) whose \( L_1 \) length in red is \( \leq R \) and whose \( L_1 \) length in blue is \( \leq B ? \)” is NP-complete.

Proof. (Sketch.) We use a reduction from Partition, based on the Fractional Knapsack reduction, where the \( v_i \)'s, \( w_i \)'s, \( V \) and \( W \) are chosen the same way as above (note that the \( v_i \)'s are larger than all \( w_i \)'s). We create “tunnels” between \( s \) and \( t \) such that the length of travel in the blue region for the \( i \)th item is at least \( c - w_i \) (where \( c \) is chosen so \( c - w_i > W \) for all \( i \)). We then create a red barrier such that travelling in red would cost \( w_i \), corresponding to choosing the item, but going around the red barrier through a blue tunnel would cost \( (v_i - w_i)/2 + w_i + (v_i - w_i)/2 \), i.e. \( v_i \), corresponding to leaving the item (see Figure 3).

We can then think of the value of choosing an item as the amount of “savings” if we shortcut through the red region instead of travelling through blue. For now, assume that if an item is not chosen, the entire blue path is followed. Thus, the length of the path in blue is \( c \cdot |N| - \sum_{i \in N} w_i + \sum_{i \in S} v_i \). We choose \( R = W \) and \( B = c \cdot |N| - \sum_{i \in N} w_i + \sum_{i \in S} v_i - V \). Thus, if the length in blue is \( \leq B \), \( \sum_{i \in S} v_i \leq \sum_{i \in N} v_i - V \Rightarrow \sum_{i \in S} v_i \geq V \).

However, the path can “cut corners” through the red region, i.e. it can cut corners of the path to allow a little red to be chosen. This corresponds to choosing a fractional item. If an item is partially selected its value will be its length in red (which corresponds to its weight in the Fractional Knapsack problem). By connecting \( n \) of these blue tunnels together, the same proof technique used for Fractional Knapsack can be used to prove our problem NP-complete. \(\square\)

We can modify this proof to work for any \( L_p \) metric, by using a variation of Fractional Knapsack in which fractional items contribute an appropriate constant times their fractional weight as value to the knapsack.

Acknowledgements

We thank David Shmoys for his assistance in proving Theorem 5. We also thank Erik Wynters, Shmuel Onn, and Robert Freimer for helpful discussions.
References


