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Bicriteria Shortest Path Problems in the Plane
(extended abstract)

Esther M. Arkin *

1 Introduction

There have been many algorithms in computational
~geometry that produce optimal paths according to
some notion of “shortest”. The problem of finding
shortest (Euclidean or L, length) paths among obsta-
cles in the plane is well-studied [1,8], and there have
been recent works also on the problem of finding short-
est paths according to other notions of “length”: link
distance [10,11], weighted length [9], and minimum-
time [3].

In this paper we study various bicriteria path prob-
lems in a geometric setting. We consider several pairs
of criteria for planar paths, including: total turn and
path length, path length measured according to two
different norms (L, and L,), and path length within
two or more classes of regions. As is the case for the
general bicriteria path problem on graphs, many of
these problems are NP-complete. In addition to prov-
ing these hardness results, we give pseudo-polynomial
time algorithms for some cases.

In a closely related paper, [2], we present a
polynomial-time approximation algorithm for comput-
ing bicriteria paths within a simple polygon, according
to the two criteria of Euclidean length and link dis-
tance. We compute (approximately) the shortest path
from s to t that uses only k links.

2 Review of Bicriteria Paths in Graphs

First, we review the general result for bicriteria paths
in graphs [4, p. 214], which forms the basis for many
of our constructions.

Theorem 1 In a graph (V, E) with positive integer
weights w; and positive integer lengths I; on ils edges,
and two distinguished nodes s andt, the problem “Does
there ezist a path from s to t with weight < W and
length < L#” is NP-complete.

Proof. We use a reduction from Partition. In the
Partition problem we are given a set N of items with
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positive integer weights a;, and ask “Does there exist
a subset § C N such that 3, .ca; = 137 a;7
Consider a graph with n+1 nodes, with s = v; and t =
Un41. Draw two edges joining node v; to vi41, a “top”
edge with length 0 and weight a;, and a “bottom” edge
with length a; and weight 0. Set L=W =1¥" aq,.
A path of length < L and weight < W on this graph
yields a partition into top and bottom edges that solves
the Partition problem. o

The above proof is not affected if we add a constant
C to the lengths (wcights) of the top and bottom edges
Joining v; and v;4,, while adding C to L (W). What
is important is that the difference between the two
lengths (weights) equals a;.

Partition is a weakly NP-complete problem, so it
is not surprising that there are pseudo-polynomial
time algorithms for this bicriteria problem. In fact,
the Bellman-Ford dynamic programming method for
shortest paths (7, p. 74] provides a polynomial time al-
gorithm for the equal-length (or equal-weight) version.
If the lengths or the weights of the edges are bounded,
we can solve the problem in polynomial time, by break-
ing the arcs into “unit” length or weight segments.
This implies a pseudo-polynomial time algorithm for
the general bicriteria problem on graphs.

For correctness we must note that the constructions
presented in this paper sometimes require irrational
coordinates. Since irrational coordinates cannot be
generated in polynomial time, our reductions, if done
precisely, are not polynomial. However, since there
are rational points arbitrarily close to irrational points,
we can choose rational coordinates in polynomial time
such that the chosen points will differ by at most €
from the desired ones. Usually we will be connecting
n gadgets. We can choose an € such that ne is small
enough so that the sum of small differences in length
over all the gadgets will not affect the optimal solution.
For brevity in this abstract, we will not indicate all the
perturbations that are necessary.

3 Total Turn and Length

One version of the geometric bicriteria path problem
in the plane asks us to find a path from s to ¢ that
minimizes the length and total turn of the path. (The
total turn of a path is the sum of the absolute values
of changes in 6 over the path.)

Any pareto-optimal path for total turn and length
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must lie on the visibility graph. (A pareto-optimalpath
is one that is not improvable in one of the two criteria
without increasing the other criteria.) If not, we can
shortcut along a chord of the path, improving both
the length and the total turn. A corollary of this is
that in a simple polygon the (unique) shortest path is
the only pareto-optimal path. For polygons with holes
however, we have the following result:

Theorem 2 The problem “Does there ezist a path
from s to t, in a polygon with holes, whose length is
< L and whose total turn is < 09” is NP-complete.

Proof. The proof is based on the graph construction
used above for bicriteria paths in graphs, with added
constants so there are no zero lengths or weights to
the edges. We again use a reduction from Partition,
scaled so that each a; is less than 7 (and thus may
not be integer). We construct a planar graph with
n + 1 nodes, with s = vy and t = v,4,. We draw two
“edges” from each v; to v;41, one with length \ + a;
and total turn 27 and one with length A and total turn
27 + a;, where ) is a constant. The claim is that the
first edge can be drawn in the plane with three bends,
with length A+a; and turn 2, and the second edge can
be drawn with 3 edges, with total length A and total
turn 27 + a; (see Figure 1). We draw a corridor of
constant length K (where K is bigger than any A +4;)
so that consecutive gadgets will not overlap.

Our obstacles will be the complement of the edges
we have drawn. Thus, a partition will exist if and only
there exists a path with total turn < 27n + 1y, a
and length <nA+1¥7"  q;. a

However, the problem is not strongly NP-complete:

Theorem 3 There ezists a pseudo-polynomial time
algorithm for the problem of minimizing total turn and
length. '

Proof. We know the optimal path must lie on the
visibility graph, so we can map visibility graph edges to
a graph G. Each visibility graph edge e between u and
v will be split into two directed edges. The directed
edge from u to v is changed into an edge between the
nodes u._out and v._jn. Similarly, the edge from v to u
becomes an edge between v._oy; and u._;,. Both edges
are given length ||u, v|| and weight (corresponding to
turn) zero.

Assume the visibility graph (VG) edges are ordered
around the vertex v. Assume that the extensions of the
visibility graph edges are also ordered around v. For
each VG edge e directed into v we find the VG edge f
directed out of v that is clockwise to e’s extension. We
connect ve_in t0 vy _sut, and give the new edge a weight
0, where 0 is the amount of turn from e to f, and

length 0. Similarly, we connect v, ;, to vy_oyt Where
g is the VG edge counterclockwise to e’s extension.

If the n obstacle vertices have integer coordinates (of
maximum size N), the smallest angle forined by any
pair of VG edges is Onin = 35, for a constant ¢. We
define A9 = -’?’{l, and round all weights 0 to integer
multiples of Af. Since no paths of interest have more
than n turns, we can argue that measuring angles to
within the resolution A# is sufficient for solving the
bicriteria path problem. By replacing an edge whose
weight is k - A by & edges each with unit weight,
and applying the dynamic programming algorithm of
Bellman-Ford on the graph G, we can find an optimal
solution within time O((nN2E)3).

4 Minimizing Both L, and L, Length

Suppose we would like to minimize the L, and L,
lengths of a path from s to ¢ simultaneously. We can
show that this problem is also NP-hard. Here we give
a proof for the Ly and L; norms. This proof can be
generalized to any two L, and L, norms (where p # ¢).

It can also be generalized to two convex distanee func-
tions that are not similar under scaling.

Theorem 4 The problem “Does there erist a path
Jrom s to t whose Ly length is < A and whose I,
length is < B#” is NP-complele.

Proof. (Sketch.) We use a reduction from Partition,
similar to the one for the bicriteria path problem in
graphs. First, we make a gadget that corresponds to
the nodes v; and v;4; and the 2 cdges between themn
(Figure 2). We start with an isosceles right triangle
with base b;, height b; and hypotenuse ¢;. We add
a skinny vertical “hump” of total length z; to the
hypotenuse. (Note that the lengths we refer to here
will be off by a small amount. By adding the ver-
tical “hump” we take a small amount away from the
length of ¢;, and the hump cannot be perfectly vertical.
However, such differences can be made small enough
so that they do not affect the structure of the proof.)
The exact values of b; and z; will be chosen later. ‘The
L3 length of ¢; is v/2b;, and the Ly length of ¢; is 2b;.
There will be only 2 paths from v; to vi41. The upper
path, following the hypotenuse and the hump, has L,
length z; + v2b;, and L, length z; + 2b;. The lower
path has L; and L, length 2b;. We choose z; so that
the upper path is longer than the lower path by a; (the
value of the ith item in the Partition problem) in the
L; norm and shorter by a; in the I3 norm. We want
z; = (2b; + a;) — 2b;, that is, z; = a;. We also want
Vv2b; + a; = 2b; — a;, which implies we should choose
b; = (2+ v/2) a;. We connect n of these gadgets along
a diagonal line, and take as obstacles the complements
of the paths drawn. o



5 Travel Through Multiple Regions

Suppose the plane is partitioned into red and blue re-
gions. We can ask for the path from s to ¢ that mini-
mizes travel in both the red and blue regions. For any
Ly, mctric this problem is NP-hard. To prove this we
first show a special version of the Knapsack problem is
NP-complete. The reduction for multiple regions will
mimic this proof. ‘

In Fractional Knapsack we are given a set N of
items, each with a value v; and weight w;, and bounds
V and W. A solution to Fractional Knapsack, will
be a set S C N of whole items and a set F ¢ N
of fractional items, with SN F = 0, such that the
knapsack has value > V and weight < W. Let f; be
the fraction of item i taken, i.e. 0 < f; < 1. The
value of a knapsack is the sum of the value of whole
items taken, plus the fractional weight of fractional
items taken, i.e. 3 .o v+ p fi-wi. Alternatively,
we can think of the value of a knapsack as the value
of items completely taken plus any remaining capac-
ity, i.e., 3 ;e 50 + (W — 3 s wi). The weight of the
knapsack is just the weight of whole items plus the
appropriate fraction of the weight of fractional items,

e Yieswi+ Y cp fi-wi

Theorem 5 The Fractional Knapsack problem, “Do
there ezist S C N and F C N such that the value of
SUF is > V and the weight of SUF < W?” s
NP-complete.

Proof. We use a reduction from Partition. Let W =
% EieN a;. For item i, let w; = a; and let v; = 2(W+
1)-a;. Let V=2(W+1)- %EieN a;. Suppose we are
given a solution to Fractional Knapsack. We know the
weight of the knapsack is < W, i.e. Yies G+ ier fir
a; < W = 13, yai. The value of the knapsack is
>V, ie.

Z2(W+1)-a,~+2f.~-a.~Z(W+1)Za.-=V.

i€S i€EF iEN

Since Y ;cp fi - ai < W we can subtract Yierfiai
from the left and W from the right to get

W)Y ai>W+1)Y ai-W

i€S iEN
1 W
= E a; > - E a; — ————".
e 2',€N 2(W+1)

We know that 2—(—"",%_—3 is a fraction, and in particular
it is less than 1/2. The sum on left hand side of the
cquation is an integer. The sum on the right hand
side of the equation is either an integer or an integer
plus 1/2. In either case, since the fraction ﬂ-,% is
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small enough, we know that Yies @i > % 2 ien @i We
already know the weight of the knapsack implies that
Yies % < 3 Yien ai- Thus, the Fractional Knapsack
solution solves Partition. 0O

We can now use a similar proof technique to show
that minimizing travel through two regions simultane-
ously is NP-complete.

Theorem 6 The problem “Does there ezist a path
Jrom s to t whose Ly length in red is < R and whose
Ly length in blue is < B#” is NP-complete.

Proof. (Sketch.) We use a reduction from Partition,
based on the Fractional Knapsack reduction, where
the v;’s, w;’s, V and W are chosen the same way as
above (note that the v;’s are larger than all w; ’s). We
create “tunnels” between s and ¢ such that the length
of travel in the blue region for the ith item is at least
¢ — w; (where ¢ is chosen so ¢ — w; > W for all 7).
We then create a red barrier such that travelling in
red would cost w;, corresponding to choosing the item,
but going around the red barrier through a blue tunnel
would cost (vi — wi)/2 + wi + (v; — w;)/2, ie. v,
corresponding to leaving the item (see Figure 3).

We can then think of the value of choosing an item
as the amount of “savings” if we shortcut through the
red region instead of travelling through blue. For now,
assume that if an item is not chosen, the entire blue
path is followed. Thus, the length of the path in blue
isce|N[-3 ey wi + 3 igs vi- We choose R = W and
B=c:|N|-3,cnwi+Yienvi — V. Thus, if the
length in blue is < B, 3, cv; < Yienti =V =
Yiesvi 2 V.

However, the path can “cut corners” through the
red region, i.e. it can cut corners of the path to allow
a little red to be chosen. This corresponds to choosing
a fractional item. If an item is partially selected its
value will be its length in red (which corresponds to
its weight in the Fractional Knapsack problem). By
connecting n of these blue tunnels together, the same
proof technique used for Fractional Knapsack can be
used to prove our problem NP-complete. o

We can modify this proof to work for any L, met-
ric, by using a variation of Fractional Knapsack in
which fractional items contribute an appropriate con-
stant times their fractional weight as value to the knap-
sack.
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‘Figure'1: Gadget for total turn and length.

5 Vitl

Figure 2: Corridors for 1y, and 7,2 Tcilil‘;é(.gltl'.

Figure 3: Blue tunnel thru red region for the ith item.



