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Around and around: Computing the shortest loop *

John Hershberger
DEC Systems Research Center

Abstract

We show that the funnel algorithm, devised to
compute shortest paths in simple polygons, can
be used to compute shortest loops in triangulated
2-manifolds. The time and space required is lin-
car in the number of triangles that the path inter-
sects. This work can be seen as generalizing the
problems of computing relative convex hulls and
minimum perimeter in-polygons.

1 Introduction

The relative convex hull of two simple polygons
is the shape of a rubber band that includes one
polygon and excludes the other. The minimum
perimeter in-polygon of a convex polygon is the
polygon with minimum perimeter that touches ev-
ery edge of the convex polygon. The computation
of cither of these polygons can be transformed into
the more general question of computing the short-
est loop of a given homotopy class in a triangu-
lated 2-manifold. In this paper, we show that the
funnel algorithm of Lee and Preparata [6], which
was devised to compute the shortest path between
two points in a simple polygon, can be used to
solve this problem. The time and space required
is proportional to the number of triangles inter-
sected by a representative of the homotopy class.

Before we go further, let us define our prob-
lem more precisely. We make similar definitions
in a companion paper on minimum length paths
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between two points [5]. A boundary-triangulated
2-manifold, or BTM, is a 2-manifold composed of
triangles in which all vertices are boundary ver-
tices. Triangulated polygons are the most im-
portant examples of BTMs; in general, however,
BTMs need not have planar embeddings.

The length of a path or loop in a BTM is de-
fined to be the sum of the Euclidean (L;) lengths
in each triangle. Notice that a minimum length
path will consist of line segments and that a min-
imum path that crosses several triangles without
touching vertices will be a straight line if the tri-
angles are unfolded to lie flat in a plane.

Two loops are said to be homotopic in a mani-
fold M if one can be deformed to the other with-
out leaving M. Two paths (or open curves) from
p to q are homotopic in M if one can be deformed
to the other without leaving M and while keep-
ing points p and ¢ fixed. We can now state our
problem:

Problem: Given a loop a in a BTM M, compute
a curve homotopic to « of minimum length.

What are probably the two most important spe-
cial cases of this problem have previously been
solved in linear time. Toussaint has studied the
problem of computing the relative convex hull of
two simple polygons in connection with the sep-
arability of polygons under translation (1, 7, 8].
He begins by triangulating the region between the
polygons to obtain a BTM that has a particularly
nice planar embedding. Czyzowicz et al. [3] have
recently solved the “Aquarium Keeper’s Prob-
lem,” a generalization of the problem of comput-
ing the minimum perimeter polygon that touches
each edge of a given convex polygon. Essentially,
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they use the reflection principle to convert this
problem to one of computing the shortest loop
around a triangulated annulus or Mobius strip.
They solve this in linear time using shortest path
maps [4]. We gain some advantage from looking
at the more general versions of these problems:
our algorithms are trivial extensions of Lee and
Preparata’s funnel algorithm for computing short-
est paths in simple polygons and our proofs are
slightly easier.

In the next section, we examine some properties
of shortest paths in BTMs and reduce the problem
of computing the shortest loop of a given homo-
topy type to the problem of finding the shortest
loop around a band—a restricted type of BTM.
We also review the funnel algorithm. Sections
3 and 4 deal with the two cases of this problem—
orientable and non-orientable bands, respectively.

2 Preliminaries: bands, funnels, turns,
and cuts

The dual graph of a BTM has a vertex for each tri-
angle; edges connect vertices whose corresponding
triangles share a common edge. We define a band
to be a BTM whose dual graph is a single cycle.
In this section, we investigate some properties of
shortest loops and bands. We reduce the general
shortest loop problem to the case of finding the
shortest loop that is homotopic to the cycle of a
band.

A loop or path « intersects triangulation edges
in a sequence. We can define the canonical loop
(or path) for a sequence of triangulation edges
to be the curve that visits the midpoints of the
edges in order. By looking at deformations to the
canonical loop, one can prove:

Lemma 2.1 Any two loops (or paths with same
starting and ending points) with the same se-
quences are homotopic.

In the full paper, we also prove:

Lemma 2.2 The sequence of triangulation edges
intersected by the shortest loop of a homolopy
class can be obtained by repeatedly removing pairs
of repeated edges.

Proof: If an edge appears twice in succes-
sion in a sequence of a loop, then the loop can
be shortened by running along the edge rather
than crossing it. The proof that removing edges
gives the sequence of the shortest loop is left to
the reader. =

Given these results, it is easy to construct a
covering space for the triangles intersected by the
shortest loop in time proportional to the length of
the sequence. For more on covering spaces see [5].

Theorem 2.1 In a BTM M with a loop a, we
can compute a band whose shortest loop is the
lift of the shortest loop homomorphic to a in M.
Computation time and space is proportional to the
number of times a intersects a triangle of M.

Proof: We can construct the sequence of
triangulation edges intersected by the shortest
loop in M by casting out duplicates accord-
ing to lemma 2.2. We then make a copy of
a triangle for each time it is visited by the se-
quence and glue these copies together along the
edges of the sequence so the resulting mani-
fold is a band whose cycle hits the edges in
sequence. Since cutting any edge of the se-
quence makes the manifold simply connected,
the shortest loop around this band visits each
edge of the sequence. »

Now, to compute the shortest loop of a given
homotopy class, it is enough to find the shortest
loop around a band. We solve two cases of that
problem in sections 3 and 4, but first we review
the funnel algorithm [2, 4, 6] for shortest paths
and define the concepts of turn angles and cut
manifolds.

If a path from a point p gives a triangulation
edge sequence with no duplications, the funnel al-
gorithm can walk through the sequence and main-
tain the shortest paths from p to the endpoints of
the current edge. The shortest paths from p to
an edge WU may travel together for a while. At
some point a they diverge and are concave until
they reach u and v, as shown in figure 1. The
region bounded by %¥ and the concave chains to



Figure 1: Splitting a funnel

a is called the funnel; a is the apex of the fun-
nel. We store the vertices of a funnel in a double-
ended queue, a deque. To update the funnel when
the next edge uw arrives, we pop points from the
deque until we reach b, the tangent to w, then we
push w. If the apex of the funnel is popped during
the process, then b becomes the new funnel apex.
Since each vertex is pushed once and popped at
most once, the total time to handle a sequence of
n edges is proportional to n. Notice also that once
the sequence and the starting and ending points
are given, the shortest path is unique.

The turn angle (fig-
ure 2) of an oriented
piecewise-linear
path with given start-
ing and ending points in
a BTM M is measured
by following the orien-
tation of the path and
summing the angles of
its turns. Each turn has
an angle -7 < 6 < =; (locally) right turns are
negative and left are positive. The turn angle
of a loop is the turn angle of the path around
the loop starting and ending at the orientation of
some edge—which edge is chosen does not affect
the angle.

Finally, if we cut a band M along any non-
boundary triangulation edge e, we obtain a simply
connected manifold M.,; whose boundary has two
copies of e. The shortest loop around M becomes
a shortest path in M.,; between two copies of a
point p € e. Czyzowicz et al. [3] show how to use
shortest path maps to compute the shortest path

Figure 2: Turn angle
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between two copies in linear time—we use some-
what lighter artillery in the following sections.

If one follows the canonical loop around a band
from an edge e back to e, then one finds that the
orientation of e has either remained the same or
reversed. We will handle these cases separately in
the following two sections.

3 Orientable bands

In this section, we show how to find the shortest
loop around an orientable band. After defining
the inner boundary of the band, we state a proce-
dure using the funnel algorithm [6] to compute the
shortest loop by walking around the inner bound-
ary twice. We prove its correctness in the rest of
the section.

The boundary of an orientable band M consists

* of two closed curves, o, to the right and o to the

left of M’s cycle. According to the next lemma,
the turn angle of the shortest loop in an orientable
band equals the turn angle of the canonical loop
or of either boundary curve.

Lemma 3.1 In an orientable BTM, two homo-
topic loops with the same orientation that have
no self intersections have the same turn angle.

If the turn angle of M is negative, then we say
that o, is the inner boundary, otherwise o) is the
inner boundary.

Figure 3: Around the inner boundary
The following procedure computes the shortest
loop:

1. Let u® be a line segment of the inner bound-
ary.
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2. pse the funnel algorithm to compute the
shortest path a from u to v that winds
around the band twice. (See figure 3.)

3. Let p be a vertex that appears twice on the
path; the path from p to p is the shortest
loop.

This algorithm is based on the fact that once
we identify a point p on a shortest loop, we can
compute the loop by computing the shortest path
from p back around to p. Lemma 3.2 says that
there is a shortest loop touching a vertex of the
inner boundary.

Lemma 8.2 There is a shortest loop that touches
a vertex of the inner boundary.

Proof: If the turn angle of a band M is pos-

itive, then the shortest loop must make a left

turn. It can only do so by turning at a vertex

of the left or inner boundary. The case of a

negative turn angle is symmetric.

If the turn angle of the band M is zero then
any shortest loop turns as much to the right as
to the left. Thus, if it turns at all, it turns at
vertices of both the inner and outer boundaries.
If the shortest loop does not turn, then cut the
band M along a triangulation edge e—the two
copies of e are parallel and the shortest loop
becomes a straight line segment ¢ between cor-
responding points of the copies of e. Without
changing the length of the segment ¢, one can
translate £ to the left until it touches a vertex
of the inner boundary. »

With this lemma, we can prove correctness.
Theorem 8.1 Given an orientable band M com-
posed of n triangles, the above procedure correctly
computes the shortest loop around M in linear
time.
Proof: Let p be the vertex on the inner bound-
ary of some shortest loop whose existence is
proved by lemma 3.2. The shortest path A
from u starts on or inside this shortest loop
and reaches p before going completely around
the band. Similarly, the shortest path from v
reaches p before going around the band in the
other direction. Thus, p is reached twice.

The path a can thus be decomposed into
three pieces: the shortest path from u to p, de-
noted a,; the shortest loop around the band,
denoted \; and the shortest path from p to v,
denoted a,. The vertices of A are obviously the
vertices of the shortest loop. Together a, and
o, compose the shortest path from u around
to v—a vertex appears on this path only once.
Thus, any vertex that appears twice on « is on
the shortest loop and can be used in place of p.
[ ]

4 Non-orientable bands

One might think that computing the shortest loop
in a non-otientable band would be more difficult.
In this section, however, we show how to find the
shortest closed curve that winds twice around the
band by a reduction to an orientable band. We
then show how to obtain the shortest loop from
this curve. The result is theorem 4.1.

Theorem 4.1 Given a non-orientable band M
composed of n triangles, one can compute the
shortest loop around M in linear time.

We can conceptually take two copies of My,
one reversed left to right, and paste them into
a single band Mygoute. The band My,yp. is ori-
entable and has turn angle zero: starting from
triangulation edge e, you travel through one copy
of My until you encounter the reversed copy, de-
noted er. Then you travel through the reversed
copy of M.y until you reach ¢ again. The turn
angles in each copy of M. have opposite sign.
We can use the procedure of the previous section
to find the shortest loop in Myouse that touches
the left boundary—call it A\. Notice that A is the
shortest closed curve that winds around M twice,
so its length is at most double the length of the
shortest loop in M. We shall see that the length
is exactly double.

Suppose )\ intersects e at a point p. Then the
shortest loop touching the right boundary is the
shortest path starting and ending at the corre-
sponding point pr € er. In other words, the
shortest loop in My,ys1e touching the right bound-
ary is A\p—the loop A viewed from the perspective



of edge er. This should not be surprising as M
has only one boundary.
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Figure 4: Cases for the shortest loop in Mgoysie

We now consider two cases depicted in figure 4.
First, if the shortest loop A in Mg,y makes any
turns, then A makes turns on vertices of both the
right and left boundaries. Since the shortest loop
touching a given boundary is unique, both loops A
and AR are identical. Therefore, A passes through
the point pr € eg—that is, A winds around the
shortest loop in M twice.

Second, if the shortest loop A makes no turns,
then by cutting the manifold Mg,y along e,
we see that the loops touching the left and right
boundaries, A and AR, form two parallel lines. If
the intersections with e are points p on the left
and ¢ on the right, as shown in figure 4b, then
the intersections with er are the corresponding
points gr on the right and pr on the left. The
line A’ parallel to A and Ar and passing through
the midpoint of the segment 77 is also a shortest
loop in Mg,4s1.. Moreover, X’ also passes through
the midpoint of grpr. But these two midpoints
are just the corresponding points on two copies of
e. As a result, A’ winds around the shortest loop
in M twice.

5 Conclusions

We have shown that the problem of finding the
Euclidean shortest loop in a BTM can be re-
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duced to the problem of finding the shortest loop
around an orientable or non-orientable band. We
have shown that these two problems can be solved
by extensions of Lee and Preparata’s funnel al-
gorithm for shortest paths. Both the reduction
and solution use time and space proportional to
the size of the description of the homotopy class.
This gives alternative linear time algorithms for
relative convex hulls and the aquarium keeper’s
problem.
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