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Introduction

Consider a set of points, P, in the plane. A triangulation P is a partition of the plane by joining the points
in P with non-crossing straight line segments so that cvery region interior to the convex hull of P is a triangle.
Although there are many polynomial time algorithms to obtain the triangulation of a set of points, there is no
known polynomial time algorithm to obtain a triangulation that minimizes the sum of the edge lengths of the
triangulation [Pré&Sh]. Let us denote such a triangulation by MWT, that is, it is a minimum weight triangulation.
This scemingly innocuous problem has proved to be one of the most perplexing problems in combinatorial optimiza-
tion. Not only is there no polynomial time algorithm to obtain an MWT for an arbitrary set of points, the problem
is also not known to be NP-hard [Ga&]Jo).

Various aspects of this problem have been explored. A possible avenue of investigation is to look at ap-
proximation schemes. In this scenario a polynomial time approximation algorithm is proposed with the intent to
produce results that are ncarly optimal. Letting C(T) denote the sum of the edge lengths of a triangulation T, one
can measure how near an approximate solution is to the optimal solution by evaluating the ratio C(AP)/C(MWT),
where AP denotes a triangulation obtained from an approximation algorithm. The two most common approximations
are the so called Greedy Triangulation (GT) and Delauney Triangulation (DT) [Pr&Sh]. For each of these methods
it has been conjectured that C(AP)/C(MST) = 1. Unfortunately there have since been examples that show that
C(DT)/C(MWT) = Q(N) [Ki] and C(GT)/C(MWT) = Q(n] / 2 [Lel, where n denotes the size of the problems. In [Li]
it has been shown that on average C(DT)/C(MWT) and C(GT)/C(MWT) are in O(log n).

An alternate direction is to look for exact solutions for restricted classes of input. An O(n3) time algorithm
to obtain an MWT form a set of vertices of a simple polygon was given independently in [Gi] and [KI]. Another
class of input that admits a polynomial time solution was recently proposed by Anagnostou [An]. Let A denote a
set of k lines. Consider a set of n points, P, lying on the lines A such that

- no two lines in A intersect in the interior of the convex hull of P

- no line is vertical

- the lines can be numbered from 1 to k such that all points of P on line i are above line i + 1, and

below linei - 1. :

We call a set of points P with the above property linearly ordered. An O(n3k) time and O(n2¥) space
algorithm is given in [An] to compute an MWT of a set of points that are linearly ordered. In this paper we

describe an O(nk) time and space algorithm to obtain an MWT of a set of linearly ordered points.
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Preliminaries

Consider a set, P, of n lincarly ordered points lying on k lines A = (A, Ay, s Ay ). We use ng to denote the
number of points in P that lie on the line A;. For each line A; € A consider the smallest closed subset, L, that
contains all n; points in P that lie on A,. Let x;; and xini denote the endpoints of L;, such that x;; is the
leftmost point on L;. For each point p € P on L, we say that it is of rank jon L, if there are j-1 points in P on
the line segment [x;1, p). We can use this indexing scheme to identify the points P, that is, cach point is

uniquely-labelled Xij denoting that the point is of rank jon L;. An example with k=4 and N = 17 is shown in

figure 1.
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Figure 1.

Definition 1: A contour Y = (y; y,...y,) is a set of points on the line segments L, with
y1=%3; for some j with1<j<n,
Ve =% for some jwith1<j<n,
Ys = xij ands<t— Ys+1 = Xuv for some u,v withu >1i.

In other words, a contour is a set of at most k points, with at most one point on each scgment L, and

including one point each from L, and L, . The number of contours is:

ny. (ny + D.(ng + D...ny_; + Dny = OWK).
Given a contour Y = (y; y,...y) ), let TI(Y) denote the chain of line segments obtained by connecting y; toy; 4 for
i=1tot-1.
Definition 2: A front Z(Y) = (z, z,...z} ) corresponding to a contour Y is a sct of points where z; is the point on
the line L; formed by intersecting [1(Y) with A. We can sce that a point z, in Z(Y) is cither a point Y inYoris
the intersection of L; and a line segment from i to Yj+1 in [1(Y).
Figure 2 shows a contour of size 3 and a front of size k=4.

Since each contour corresponds to exactly one front, it follows from lemma 1 that the number of fronts is
OmX). We inducea partial ordering on the fronts so that a dynamic programming approach can be used to build
up the minimum weight triangulation in stages.

We use p <z, to denote that p is to the left of z, and p < z, to denote thatp < z, or p=z,.

Definition 3. A front Z = (z; z,...z} ) is said to be lexicographically smaller than the front W = (w; w,...w; ) if for

SomEj,zi=wifor1$i<jand zj<wj'
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Figure 2.

Definition 4: A contour Y is lexicographically smaller than contour Y’ if the front Z(Y) is lexicographically smaller
than the front Z(Y’).

For a contour Y let T(Y) denote a minimum weight triangulation of the points {xij I Xij <z;,z;€ Z(Y)land
constrained to lie to the left of TI(Y).

Algorithm Triangulate

Input: A set of n points, P, lying on k linearly ordered lines.

Output: A minimum weight triangulation of P.

Step 1. Construct a lexicographically ordered list, Q, of contours.

Step 2. For each contour Y in Q determine the front Z(Y) = (zl,...zk) and compute T(Y).

Observe that a triangulation T(Y) for the lexicographically largest contour Y is a triangulation of P.

We begin by showing how to construct Q in O(nk) steps. Construct an auxiliary set of point X(P) by adding
to the set P:
- the midpoints of the line segments (xii  Xij +1
- a point to the left of x;; for each line L,i=2k1
- a point to the right of x, . for each line L,i=2 k-1
Thus IX(P)] = 2n + k-4. '

Consider a k point contour, C, of X(P). Let w(C) = (wy, Wy...w} ) denote a k character word such that w; is
the rank of ¢; on the line L. Using w(C) for each k point contour C we can construct an ordered list, S, in
omk) steps. We can construct Q from S in an additional O(nk) steps. To complete the dynamic programming
algorithm, we show that step 2 of algorithm Triangulate can be executed in constant time. In other words, given
minimum weight triangulations for all lexicographically smaller contours, we compute the triangulation of a new
contour in O(1) time. This is shown by the following principle of optimality condition.
Lemma: Every triangulation T(Y) contains as a subset T(Y’) where Z(Y’) < Z(Y), and there is no other contour Y _
so that Z(Y) < Z(Y") < Z(Y).

We can now claborate on step 2 of algorithm Triangulate. For each contour Y we consider all of the (at
most 2k-2) configurations of lemma 2. Let D denote an array indexed from 1 to nS, where nS is the size of the

ordered list S introduced earlier, so: nS = (2n1-1)(2n2+1)(2n3+1)...(2nk_1+1)(2nk-1).
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We store the weight of contour Y in D by using w(C) corresponding to Y as in the explanation of algorithm
Triangulate. For each configuration we use a table lookup into Q to find the cost of the minimum weight trian-
gulation of the appropriate lexicographically smaller contour. We then compute the cost of T(Y) by adding the
weights of the edges required to complete the triangulation. Therefore, step 2 requires O(1) time per contour,
resulting in an O(¥) minimum weight triangulation algorithm.
We now state the main result of the paper.
Theorem: A minimum weight triangulation of a set of linearly ordered points lying on k lines can be obtained in
O(mX) time and space.
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