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EXTENDED ABSTRACT

Let RP be a hyperrectilinear polytope in E4, for d = 2 (rectilinear polygon when d = 2) and let H
be a sct of disjoint hyperrectilinear polytopes in E4 defined inside RP . Polyiope RP is referred to as the
boundary and the sct H is a sct of holes. ForIP = (RP, H ), we use p (IP) to denote the (d -1)-volume of
the hyperplane scgments that define RP plus the sum of the (d-1)-volume of the hyperplane segments
that define the holes in H. In this paper we consider the RP —RP, problem in which RP is partitioned
into hyperrectangles (rectangles when d = 2) by introducing a set of orthogonal hyperplane segments (line
segments when d = 2) whose total (d-1)-volume (length when d = 2) is least possible. We use m (IP) to
denote the total (d-1)-volume of the partitioning segments in an optimal solution to /P. The problem of
finding m (/P ) given IP is NP-hard for all d 2 2. In this paper we present an O(dn log n) approximation
algorithm for the RP-RP, problem that generates solutions whose (d-1)-volume is at most
(2d-1.5)p (IP) + (4d-2)m (IP), where n is the total number of segments in RP and H.

The RP—RP ; problem models the channel definition phase of a CAD system [R] and it was shown
to be NP-hard by Lingas ct. al [LPRS]. Several approximation algorithms for this problem have been
developed. These algorithms are given in [R], [U], [L], [DC], [L1], and [L2]. The best of these algo-
rithms are the ones reported in [L1] and [L2].

Levcopoulos’ algorithm [L2] consists of two algorithms. The first algorithm has an approximation
bound 12m (IP )+6p (IP ), but Levcopoulos conjectures that it is bounded by Tm(IP) + 3.5p(IP). Obvi-
ously, this algorithm is advantageous when p (IP) < m (IP). The second algorithm is advantageous when
p(UP)2m(IP). In this paper we develop for the RP —RP, problem an approximation algorithm that gen-
erates solutions whose total length is bounded by 6m (IP) + 2.5p(IP).

We also consider a more general version of the problem, i.e., when it is defined over E4 for d > 2,
for which there are no previous approximation algorithms. Our O(dn log n) approximation algorithm

1 Current address: Computer Engineering and Science Department, Case Westemn Reserve University, Cleveland, Ohio
44106. i



184

that generates solutions whose (d -1)-volume is at most (2d-1.5)p (IP) + (4d-2)m(IP).

APPROXIMATION ALGORITHM

Let us now discuss our approximation algorithm for the RP —RP4 problem. First a hypermrectangle
R (whose facets are orthogonal to axes) is placed to include the hyperrectilinear polytope, and each of the
comers of RP and H is replaced by point. The set of points is referred to as set P. In other words, from
an instance IP = (RP, H) of the RP-RP, problem we construct an instance / = (R, P)of the RG-P,4
problem. This problem is solved by the divide-and-conquer procedure defined in [GRZ] (other approxi-
mation algorithms appear in [GZ1], [GZ2], and [GRSZ]). All the parts of the hyperplane segments intro-
duced by that algorithm inside RP but not inside the set of holes H are said to form the solution to the
original problem, if it is the case that the segment includes a point in P or there is another segment intro-
duced by the divide-and-conquer algorithm incident to it. We should point out that if we do not place
these two restrictions, then there could be about n2 segments in our solution. By placing thesc two res-
trictions we limit the number of segments to O(n). The final segments are referred to as Egpy (IP) and
the segments introduced by the divide-and-conquer procedure that are inside RP but outside H arc
referred to as SET(/P). Note that V;_1(SET(P)) 2 Vy-1(Egpx (IP)), where V4_1(A) denotes the sum of
the d-1 volume of the elements in set A.

Before we explain this in more detail, let us explain the divide-and-conquer procedure given in
[GRZ)]. The RG—P, problem is formally defined by I = (R=(0,X), P), wherc O and X dcfinc a hyper-
rectangle or boundary R (O = (01, 02, .., 04 ) is the "lower-left” comer of the hyperrectangle ( origin of
1),and X = (x3, X2, ... , Xq) are the dimensions of the boundary) ind -dimensional Euclidcan space (E?),
and P = {py1, P2, ... P } is a set of points ( degenerate holes ) inside hyperrectangle R. We shall refer to
the d dimensions (or axes) of E4 by the integers 1,2, ..., d.

Procedure PARTITION begins by relabeling the dimensions so that xy 2 x2 2 ... 2 X4. Then it
checks if P (I) is empty and if so, it returns. Otherwise, it introduces a mid—cut or an end—cut. A mid-
cut is a hyperplane segment orthogonal to the 1-axis that intersects the center of the hyperrectangle (i.c.,
it includes point (01+x1/2, 02+x2/2, ..., 0a+X4/2) ) and an end-cut is a hyperplane scgment orthogonal to
the 1-axis that contains either the "leftmost" or the "rightmost” point in P (I). A mid—cut is introduced
when the two resulting subproblems have at least one point each. Otherwise, an end—cut is introduced.
The end—cut intersects the leftmost point if such a point is not located to the left of the center of the
hyperrectangle, otherwise the end —cut intersects the rightmost point.

ANALYSIS

Now let us analyze the performance of our algorithm. To cstablish the time complexity bound is
simple since it follows from the fact that the number of points is n; the time complexity bound in [GRZ];
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and the fact that O(n) scgments arc introduced. Now let us concentrate on the approximation bound. Let
E,p (IP) be any optimal hyperrectangular partition for /P. Let R be any hyperrectangle in it. Note that
all the d-volume in R” must also be in RP. When running the algorithm we may think of the problem
instance as being formed by I” = (R, R’, P), even though the algorithm does not know R’. Let
BDRY(R'(1)) be the (d-1)-volume of the facets in R'(/) located inside R(I), and let OV(R'(l)) be
(d-1)-volume of the facets of R'(/) inside R (/) that overlap with the hyperplane segments introduced by
PARTITION. Later on we establish that the set of segments introduced by the algorithm inside or on R’,
which we denote by SET(R (1)) is such that
Va-1(SETRR'(1))) < (2d-1.5) BDRY(R'(1)) + OVRR'(1)).
Summing over all R', ¥ V,i(SETRR'(/))) £ ¥ ( (2d-1.5) BDRY(R'()) + OV(R'()) ). Since
Y. BDRY(R ‘) =2mdUP) + pUP), and Y OV(R ‘(1) is m(IP) ( note that the only new segments that
overlap with the boundary are those in E,, (IP) ), we know that
Va-1(Eapx(IP)) < (4d-2)m(IP ) + (2d-1.5)p (IP).

Theorem 1: Vg_1(Eqpx (IP)) < (4d-2)m(IP) + (2d-1.5)p (IP).
Proof: By the above discussion. []

BOUND FOR V,_;(SET(R'(I)))

Let us now show that for every problem instance / defined above, algorithm PARTITION intro-
duces a set of hyperplane segments inside R'(/) whose total (d-1)-volume is at most
(2d-1.5) BDRY(R'(I)) + OV(R'(1)). Inlemma 1 we prove a stronger result (which is easier to prove) that
uses the CARRY function. One may visualize our proof as follows. Every time a hyperplane segment is
introduced inside R” by the algorithm it is colored red. The segments in R’ that overlap with a cut (OV)
or scgments in BDRY belong to an instance without points, are colored blue. Our approach is to bound
the (d-1)-volume of the red segments by that of the blue segments. The segments in SET represent the
scgments introduced in R” and CARRY represents some previously introduced red segments that have not
yet been accounted for by blue segments. The proof consists of showing that at all time the (d-1)-volume
of the red segments can be accounted by that of the blue segments. There are many technical details that
for brevity we cannot include. The result in this section, whose proof is complex, is given by the follow-
ing lemma.

Lemma 1: For any problem instance /, SET(R (7)) + CARRY(/) < (2d-1.5) BDRY(R'(/)) + OV(R (I)).
Proof: The proof, which for brevity will be omitted, is by induction on the number of points inside 7, i.e.,
I P(I') 1. Ttis intcresting to note that besides the generalization of our arguments to d dimensions, there
arc only a couple of cases more in the general proof than in the one for the case whend =2. O
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We have developed an O(dn log ) approximation algorithm for the RP —RP, ‘problem that gen-
erates solutions whose (4-1)-voluime is at most (2d-1.5)p(IP) + (4d-2)m(IP). Obviously, when
p'P) <m(IP), it generates reasonably good solutions. Our approximation bound degrades when p (IP)
is very large compared to m (IP). Developing an efficient approximtation algorithm for this ‘other case
seems difficult. The approach used for the case when d = 2, cannot be generalized to arbitrary d .
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