187

Polyhedral Approximation
of Bivariate Functions

Per-Olof Fjallstrom
Department of Computer and Information Science
Link6ping University
S-581 83 Linkoping, Sweden

Abstract

Given a set V of n points drawn from a bivariate func-
tion and a non-negative scalar d, we want to find a
smallest subset, V', of V, such that a polyhedral sur-
face interpolating V’, does not deviate more than d
from any point in V. A greedy heuristic, requiring
O(n?%log n) time and ©(n) space, is presented.

Key words: Computational geometry, Delaunay
triangulation, polyhedral approximation.

1 Introduction

In many applications, e.g computer vision and geo-
graphic data processing, we need to approximate func-
tions of two variables, where the function value is ini-
tially defined only at irregular locations. A standard
method for problems of this kind is to first triangulate
the locations. The value of the function at an arbitrary
location is then computed by performing an interpola-
tion within the triangle containing the location. It is
widely recognized that the so-called Delaunay triangu-
lation is good for these purposes [4,6,5].

In applications with large amounts of data available,
it may also be necessary to reduce the initial set of
data. Accordingly, several researchers have studied the
problem of constructing so-called hierarchical surface
models, which provide representations of the data at
successively finer level of details. See, for example, De
Floriani [1]. The problem studied in this paper is re-
lated: how to find an maximum reduction of the given
data satisfying an accuracy-based criterion. A more
formal description of the problem is given below.

We have a set S of n locations in the z-y plane.
To each location (z;,1) € S there is an associated
height, z;, the value of an underlying primitive func-
tion, z = F(z,y). Observe that F is usually known
only at locations in S. Let V denote the set of points
(zi,¥i,2i),i=1,...,n. Letdbe a non-negative scalar.

Our general goal is to find a piecewise linear function
for which the vertical deviation from the points in V
never exceeds d, and the representation requires as lit-
tle storage space as possible. However, to limit the
number of possible solutions, we will study this prob-
lem with respect to the following method of polyhedral
approximation. Given a set U of points in space, let
z = F4(U;z,y) denote the piecewise linear function
obtained as follows:

1. Compute the Delaunay triangulation of R,
DT(R), where R is the projection of U onto the
z-y plane.

2. Within each triangle of DT(R), F, is equal to the
plane interpolating the heights at the vertices of
the triangle.

If we apply this scheme to V, we may get an un-
necessarily detailed approximation of F. Instead,
we try to find a smallest subset V' of V such that
F4(V';z,y) never deviates more than allowed from V.
In order for Fu(V’';z,y) to have the same domain as
Fa(V;z,y), V' must contain all points (z;, y;, z;) such
that (z;,) € E(S), where E(S) is the set of extreme
locations in S. Let us call this set E(V). Our problem
can now be formulated as follows:

Given a set V of points drawn from a bivari-
ate function and a non-negative scalar d, find a set
I CV — E(V) of minimum size such that:

|FA(E(V)UI;£i,yi)—Z£'Sd, i=1’--°)n (1)
Any set I which satisfies (1) will be called admissible,
and an optimal set, i.e. an admissible set of minimum
size, is denoted I*. Furthermore, we say that a triangle,
{(2i,%), (=, 9;), (£, y&)}, is admissible either if there
are no locations in the interior of the triangle or if the
heights of the interior locations do not deviate more
than d from the plane interpolating the heights at the
vertices.

188

An obvious brute force algorithm for this problem
would be to first determine E(V), and then try out
all pussible subsets of the remainiug points in order of
increasing size until an admissible set is found. This
would require exponential time in the worst case. It
is left open here whether a polynomial time algorithm
exists or not. However, even if such an algorithm exists,
it seems reasonable to assume that it must determine
which triangles are admissible, and, for every pair of
admissible triangles, if they can coexist in a Delaunay
triangulation !. Just to represent this information, in
e.g. a graph, would require ©(n®) space in the worst
case. Since we here assume that n is large, such an
algorithm would be prohibitively expensive.

Instead, we will investigate a simple greedy algo-
rithm requiring O(n?log n) and ©(n) space. It is based
on a very simple idea: we start with a coarse polyhe-
dral approximation, this is iteratively refined until an
admissible approximation is obtained. It is possible
to construct input for which this algorithm performs
poorly. However, experiments indicate that good re-
sults can be obtained under conditions likely to occur
in many applications.

2 The algorithm

In the following we assume that E(S) is known. Other-
wise, the extreme locations of S can easily be computed
in O(nlogn) time [7].

Information about the current polyhedral approxi-
mation is kept in a simple data structure consisting of
a list of records, one record for each triangle. Each
record contains a pointer to a list of all locations lying
in the interior of the triangle. Also, in each record there
is information indicating at which interior location the
height deviates most from the current approximation,
and how large this deviation is. The algorithm consists
of the following steps:

1. Compute DT(E(S)). Together with the heights
at locations in E(S), this triangulation defines the
initial polyhedral approximation.

2. Initialize the data structure for DT'(E(S)), i.e. for
each triangle in DT(E(S)) it is determined which
locations lie in the interior of the triangle, what
the maximum deviation is, and for which location
it occurs. If some location is found to lie on the
edge between two triangles, it is assigned to one
of them.

1Two triangles can coexist in a Delaunay triangulation only

if no vertex of one of the triangles lies in the interior of the

circumcircle of the other triangle.

3. Determine the maximum deviation, mazdev, over
all triangles in the current triangulation.

4. If mazdev is less than or equal to d, the current
approximation is admissible and we are done, oth-
erwise refine the current triangulation as follows:

(a) Let p be a location for which the deviation
is equal to mazdev. This location is now
to be inserted into the current triangulation.
First, find all triangles whose circumcircles
contain p. Together these triangles form a
star-shaped polygon R with p in its kernel.

(b) Update the data structure, i.e. the triangles
found in the previous step are replaced by the
triangles formed by inserting edges from p to
the boundary vertices of R. Also, for each of
the new triangles, we determine the interior
locations, the maximum deviation, and where
this deviation occurs.

(c) Go to Step 3.

It is easy to see that most of the computations in-
volved in this algorithm are the same as those per-
formed in the iterative method for computing the De-
launay triangulation [3,8]. In the iterative method, the
insertion of the k:th location p may lead to the inser-
tion of O(k) new edges incident to the inserted location.
Hence, a total time of O(n?) is required. In our case, we
must also determine which locations are interior to the
new triangles. This is easy; sort the new edges angu-
larly around p, then use binary search to determine in
which triangle a location lies. Obviously, we only need
to consider the locations interior to the replaced trian-
gles. In our method, we then need O(nlogk) time to
insert the k:th location and a total of ©(n? logn) time
in the worst case.

3 Performance analysis

In the following, let I be the set of points inserted by
our method until (1) is satisfied.

We will first show that the worst case performance
of our method is poor: the ratio |I|/|I*| is ©(n) in
the worst case. Consider the case illustrated in Fig-
ure 1. Here, E(S) is equal to the vertices of the unit
square. These locations are assigned the height 0. All
the remaining locations lie along one of the diagonals.
One of these locations lie on the center of the square,
and is assigned an arbitrary non-zero height, say 5d.
Let us call this point p. The remaining points are al-
ternatingly lying a distance d above or below the line
segments connecting p to the extreme points of the di-
agonal. This construction can be seen more clearly in

Figure 2: Cross-section along diagonal.

Figure 2, showing a cross-section along the diagonal.
Obviously, I* = {p}. However, if the height of the lo-
cation immediately to the left of p is greater than 5d,
then our method will first choose this point. It is now
easy to see that our method will be forced to insert
every point, except p, until an admissible set is found.
This negative worst-case behaviour does, however,
not imply that the method is useless. In the following,
we present experimental evidence that the method per-
forms well under conditions often occurring in practice.
To generate test data we have used the function:

0.75¢~((9z=2)"+(9v-2)")/4
0.75¢~ (9= +1)*/49+(9y+1)/10)
0.50e=((9z=7)’+(9y-3)*)/4 _
0.20¢~((92=4)’+(9y=7)")

F(z,y) =

This function has been used by other researchers to
test non-linear interpolants for scattered data interpo-
lation [2,9]. Data is generated in the domain of the unit
square, where this function has two maxima, one min-
imum and a saddle point. In the following a test case
refers to a set S of n locations in the plane and a set
h of heights at these locations. S will always contain
the vertices of the unit square, whereas the remaining
locations are chosen randomly within the unit square.

189

100 300

500

700 900

Figure 3: Median size of I for increasing values of n.

Set h will consist of more or less perturbed values of
F.

We ran three series of tests, corresponding to
an increasing perturbation of function values: for
series k, £k = 0,1,2, the height at a loca-
tion (z;,y) was chosen randomly in the interval
[F(z:,y:) — kd, F(zi,) + kd]. The value of d was set
to 0.05. In each series, for n = 100, 150, ..., 1000, we
generated 21 test cases for each value of n. In Figure 3,
we have, for each series, plotted the median value of
|| for each value of n. We observe, that with no per-
turbation, i.e. k = 0, the median value is essentially
constant.

The results presented so far does not tell us very
much about how a solution obtained by our method
compares with an optimal solution. Since we know of
no other way to find an optimal solution than exhaus-
tive search, we have to estimate the size of an optimal
solution. This estimate should be as large as possible
without ever exceeding the true value.

To determine if there is no admissible triangulation
with v vertices, we can proceed as follows. First, we
compute t(v), the corresponding number of triangles.
It is well-known that ¢(v) = 2(v — 1) — e, where e is
the size of E(S). A necessary requirement for the ex-
istence of an admissible triangulation with v vertices
is that the remaining n — v locations can be assigned
to the t(v) triangles. To explain what we mean by
assigning locations to triangles, assume that we know
maz, the maximum number of locations interior to any
admissible triangle. We now assign maz locations to
each triangle until either the accumulated number of
assigned locations is at least n — v or we run out of
triangles. In the latter case, we can immediately con-
clude that there is no admissible triangulation with v
vertices. Hence, a simple method to estimate the size

190

of an optimal solution would be start with v = ¢, and
then increment v until ¢{(v) - maz > n — v. Obviously,
this estimate can never exceed the true value. It can,
however, be much lower since the number of locations
which are actually contained in admissable triangles
containing maz locations can be small. Instead, we
will use a more refined method of assigning locations
to triangles.

Each location p is generally contained in a number
of admissible triangles. Let n, be the maximum num-
ber of locations contained in any admissible triangle
containing p. For i = 0,...,maz, let m; be the size
of {p € §:np, =i}. Observe, that the total number
of locations interior to admissible triangles containing
at least j, j > 0, locations is at most E:’;‘;‘ m;. To
decide if no admissible triangulation with v vertices
exists, we start by assigning maz locations to trian-
gles. However, this time maz locations are assigned
only t0 tmaz = |Mmas/maz] triangles since this is the
maximum number of triangles which simultaneously
can contain maz locations. Next, we assign maz — 1
locations to triangles. This can be done to at most

tmaz—»l = l_(mmdswl -+ Mmar — tmag . maz)/(maz -— I)J

triangles. Continuing like this, that is, assigning j,
J > 0, locations to t; = |(005 mi — 102574 ti - 9)/i)
triangles, we finally arrive at a situation when either
the total number of locations assigned to triangles is
at least n — v or we run out of triangles.

To estimate the size of an optimal solution, we repeat
the above process for increasing values of v until we
manage to assign at least n — v locations to triangles.
The value of v for which this happens is our estimate
of the size of an optimal solution. It should be obvious
that this value can never exceed the true value. This
makes it possible to compute an upper bound on the
ratio |I|/|I*|].

The above method for estimating the size of opti-
mal solutions was applied to the earlier described tests.
Since the computation of estimates is rather time con-
suming, it was necessary to decrease both the maxi-
mum value of n and the number of generated test cases
for each value of n. In Figure 4, the upper bound on
|1]/11*| is plotted for increasing values of n. These re-
sults suggest that our method gives good results, in
particular when the amplitude of the local variations
in the given data is small compared to d.

References

[1] L. De Floriani. A pyramidal data structure for
triangle-based surface description. IEEE Computer
Graphics and Appl., 67-78, March 1989.

1 I 1 | |
300 500

Figure 4: Upper bound on |I|/|I*| for increasing values
of n.

[2] R. Franke. Scattered data interpolation: tests of
some methods. Math. Comp., 38:181-200, 1982.

(3] P.J. Green and R. Sibson. Computing Dirichlet
tesselations in the plane. The Computer Journal,
21(2):168-173, 1978,

[4] C.L. Lawson. Software for C! surface interpola-
tion. In J.R. Rice, editor, Mathematical Software
II1, pages 161-194, Academic Press, 1977.

[5] A.Lingas. The greedy and Delaunay triangulations
are not bad in the average case. Information Pro-
cessing Letters, 22(1):25-31, 1986.

[6] D.H. McLain. Two dimensional interpolation from
random data. The Computer Journal, 19(2):178-
181, 1976. ‘

[7) F.P. Preparata and M.I. Shamos. Computational
Geometry: An Introduction. Springer-Verlag, New
York, N.Y., 1985.

[8] D.F. Watson. Computing the n-dimensional De-
launay triangulation with applications to Voronoi
polytopes. The Computer Journal, 24(2):167-171,
1981. :

[9] T. Whelan. A representation of a C? interpolant
over triangles. Computer Aided Geometric Design,
3:53-66, 1986.

