A PROPERTY OF CONVEX POLYGONS

(Extended Abstract)

Ву

Eduardo Rivera-Campo and Jorge Urrutia

1 Introduction. -

A collection S of plane polygons is well supported if at least one side of a polygon in S is contained in the boundary of the convex closure of S. A line I separates a set A from a collection G of plane sets if A is contained in one of the closed halfplanes determined by I while every set in G is contained in the complementary closed halfplane.

Not every collection of $n \ge 3$ convex sets is well supported; in this article we prove that every collection of n convex polygons in the plane with pairwise disjoint interiors contains a well supported subcollection with at least $\lceil (3n+55)/54 \rceil$ sets.

In [5] H. Tverberg proved that for each positive integer k, there is a minimum interger f(k) such that for every collection F of f(k) or more plane compact convex sets with pairwise disjoint interiors, there is a line that separates one set in F from a subcollection of F with at least f(k) sets. K. Hope and M. Katchalski showed in [3] that $3k+1 \le f(k) \le 12k-11$.

In this article, we prove that if F is a collection in the plane of convex polygonal regions, not necessarily bounded, with pairwise disjoint interiors, there is a side s of a region in F such that the line supporting s separates a region in F from a subcollection of Fwith at least $\lceil (3n+1)/54 \rceil$ sets. As a corollary we show that in every collection F ofn compact plane convex sets with pairwise disjoint relative interiors, there are two sets A and B such that every line that separates A from B separates either A or B from a subcollection S of with at least [(3n+1)/54] sets. This improves a bound given by E. Rivera-Campo in [4].

2 Preliminary Results. -

The following result was proved in [1]; see also [2].

Theorem .- Any collection of n compact, convex and pairwise disjoint sets in the plane may be covered with n disjoint convex polygons with a total of not more than 6n-9 sides. Furthermore, no more than 3n-6 distinct slopes are required.■

We adapt the proof given in [1] to obtain the following lemma.

Lemma 1.- Let $P = \{P_1, P_2, \ldots, P_n\}$ be a collection of $n \ge 3$ plane convex polygons (polygonal regions) with pairwise disjoint interiors. There exists a collection $R = \{R_1, R_2, \ldots, R_n\}$ of plane convex polygons (polygonal regions) with pairwise disjoint interiors such that:

- 1) For i = 1, 2, ..., n, $P_i \in R_i$.
- 2) Each side of R_i contains a side of P_i .
- 3) The total number of sides among R_1, R_2, \ldots, R_n is at most 9n-12.

3 Main Results. -

Theorem 2.- If $P = \{P_1, P_2, ..., P_n\}$ is a collection of disjoint convex polygons in the plane, then P contains a well supported subcollection with at least $\lceil (3n+55)/54 \rceil$ sets.

Proof.- By Lemma 1, there is a collection $R = \{R_1, R_2, \ldots, R_n\}$ satisfying 1), 2) and 3). Let $S = \{s_1, s_2, \ldots s_m\}$ be the set of all sides of the polygons in R.

For each s_j in S, let $R_{i(s_j)}$ and $H^+(s_j)$ denote the polygon in R that contains s_j and the closed half plane determined by s_j that contains $R_{i(s_j)}$, respectively. Define a bipartite graph G as follows: G has a vertex u_i for each polygon $R_i \in R$ and a vertex v_j for each side $s_j \in S$. There is an edge $u_i v_j$ in G if the polygon R_i is contained in $H^+(s_i)$.

Since any pair of polygons { R_p , R_q } is well supported, then there is at least one edge in G for each pair { R_p , R_q }; and since $R_{i(s_j)}$ is contained in $H^+(s_j)$, then there are m additional edges in G, one for each side s_j . The total number of edges in G is at least $\left(\frac{n}{2}\right)$ + m.

The graph G is bipartite, then there is a vertex v_t with degree at least $\left(\left(\frac{n}{2} \right) + m \right) / m = \left(\left(\frac{n}{2} \right) / m \right) + 1 \ge \left(\left(\frac{n}{2} \right) / (9n-12) \right) + 1$

which is greater than (3n+55)/54. This means that the closed halfplane $\operatorname{H}^+(s_{\operatorname{t}})$ contains a subcollection $R(s_{\operatorname{t}})$ of R with at least $\lceil (3n+55)/54 \rceil$ polygons. The corresponding subcollection $P(s_{\operatorname{t}})$ of P is well supported since $P_{1(s_{\operatorname{t}})} \in P(s_{\operatorname{t}})$ and the side of $P_{1(s_{\operatorname{t}})}$ which is contained in s_{t} lies in the boundary of the convex closure of $P(s_{\operatorname{t}})$.

Theorem 3.- Let $P = \{P_1, P_2, \ldots, P_n\}$ be a collection of $n \ge 2$ plane convex polygonal regions with pairwise disjoint relative interiors. There is a side s of a region P_i such that the line that supports s separates P_i from at least $\lceil (3n+1)/54 \rceil$ sets in P.

Proof.- Let $R = \{R_1, R_2, \ldots, R_n\}$ be as in Lemma 1 and $\{l_1, l_2, \ldots, l_m\}$ be the set of lines supporting the sides of R_1, R_2, \ldots, R_n ; by Lemma 1, $m \le 9n-12$. If a line l supports a side of c sets in R, we include c copies of l in l. Therefore we may associate to each l_k a unique set $R(l_k)$ in R such that l_k contains a side of $R(l_k)$. For $i = 1, 2, \ldots, m$, let $H^-(l_k)$ be the closed halfplane determined by l_k that does not include $R(l_k)$.

Define a bipartite graph F with a vertex u_i for each set R_i and a vertex v_k for each line I_k . The graph F has an edge $u_i v_k$ if the set R_i is contained in $H^-(I_k)$.

For every pair of polygonal regions $\{R_i, R_j\}$, there is at least one side s of one of them such that the line supporting s separates R_i from R_j . Therefore F has at least one edge for each pair $\{i, j\}$ with $1 \le i < j \le n$. Since F is bipartite, there is a vertex v_k whose degree in F is at least $\left[n \atop 2 \right] / \left[n \right] / \left$

The closed halfplane $H^-(l_k)$ contains at least $\lceil (3n+1)/54 \rceil$ sets in R. Since $R(l_k)$ is not contained in $H^-(l_k)$ then l_k separates $R(l_k)$ from at least $\lceil (3n+1)/54 \rceil$ sets in R. To end the proof, let s be such that $R(l_k) = R_s$. The line l_k separates P_s from at least $\lceil (3n+1)/54 \rceil$ sets in P and by Property 2 in Lemma 1, l_k supports a side of P_s .

Corollary 4.- In any collection F of $n \ge 2$ plane convex sets with pairwise disjoint relative interiors, there is a pair of sets. A and B, such that any line that separates A from B separates either A or B from at least $\lceil (3n+1)/54 \rceil$ sets in F.

Proof. Let $A = \{A_1, A_2, \dots, A_n\}$ be a collection of convex sets in the plane with pairwise disjoint relative interiors. Let $L^0 = \{l_{ij}^0 : 1 \le i < l_{ij}^0 : 1 \le i < l_{ij}^0$

 $j \le n$ be a set of lines such that l_{ij}^0 separates A_i from A_j .

Each line l_{ij}^0 determines two closed halfplanes H_{ij}^0 and H_{ji}^0 containing A_i and A_i respectively. For i = 1, 2, ..., n let $R_i = \bigcap$ H_{ik}^0 , $1 \le k \le n$, $k \ne i$. Clearly $R^0 = \{R_1^0, R_2^0, \dots, R_n^0\}$ is a collection of convex plane polygonal regions with pairwise disjoint relative interiors. By Theorem 3, there is a side s of a region $R_{i(0)}^0$ such that the line $l_{i(0)j(0)}^0$ that supports s separates $A_{i(0)}$ from at least $\lceil (3n+1)/54 \rceil$ sets in F. If there is another line l^1 that separates $A_{i(0)}$ from $A_{j(0)}$ but separates neither $A_{i(0)}$ nor $A_{j(0)}$ from at least $\lceil (3n+1)/54 \rceil$ sets in F, let $L^1 = \{ I_{ij}^1 : I_{i(0)j(0)}^1 = I^1$, and $I_{ij}^1 = I_{ij}^0$ if $\{i,j\} \neq \{i(0),j(0)\}\}$. For $1 \leq i < j \leq n$, let H_{ij}^1 and $R_i^1 = \bigcap_{i,k} H_{ik}^0$, 1 $\leq k \leq n$, $k \neq i$ be defined as above and apply Theorem 3 to $R^1 = \{R_i^1, R_i^1\}$ R_2^1, \ldots, R_n^1 }. The process is repeated until a stage t is reached, where the sets $A_{i(t)}$ and $A_{j(t)}$ are such that every line separating them, separates either $A_{i(t)}$ or $A_{j(t)}$ from at least $\lceil (3n+1)/54 \rceil$ sets in F. Notice that $t \le {n \choose 2}$ since $\{i(q), j(q)\} \ne \{i(p), j(p)\}$ whenever $q \ne p$.

We believe that the bounds given in Theorems 2 and 3 are not optimal; we think that the right values are close to n/3.

4 References. -

- H. Edelsbrunner, A. D. Robison and X. Shen, Covering convex sets with non-overlapping polygons, TR. UIUCDCS-R-87-1364, Department of Computer Science, University of Illinois at Urbana-Champaign.

 L. Fejes Tóth, Illumination of convex sets, Acta Mathematica
- Scientiarum Hungaricae 29 (1977) pp 355-360.
- K. Hope and M. Katchalski, Separating plane convex sets, to appear in Mathematica Scandinavica.
- E. Rivera-Campo, A note on separation of plane convex sets, Proceedings of the Second Canadian Conference on Computational Geometry, University of Ottawa, 1990, pp 78-80.
- H. Tverberg, A separation property of plane convex sets, Mathematica Scandinavica 45 (1979), pp 255-260.

Eduardo Rivera-Campo Departamento de Matemáticas Universidad Autónoma Metropolitana-Iztapalapa Apto. 55-534, México D.F. 09340, México

Jorge Urrutia Computer Science University of Ottawa 34 George Glinski Ottawa, Ontario K1N 6N5 Canada