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Abstract. An arrangement of hyperplanes A in ¢ is said

to shatter a point set O if each point of O is contained within
the interior of its own cell of A. In this paper, we investi-
gate the number of hyperplanes required by an arrangement
that shatters a set of n points in general position. We show
that such sets can require between Q({/n) and Q(n) shatter-
ing hyperplanes. We also provide an algorithm that finds a
linear-size shattering for such sets. The shattering produced
exceeds the requirement of the worst known examples by at
most a constant that depends only on d. We also give some
results for when the points are in convex position.

1 Introduction

An arrangement of hyperplancs A in #¢'is said to shatter
a point set O if each point of O is contained within the
interior of its own cell of .A. Throughout this paper,
we assume that point sets are finite and do not contain
duplicate points.

Shattering problems were first investigated by
[FMP90]. Their main results were showing that find-

ing a minimum-cardinality shattering is NP-Complete
for d > 2, and providing non-trivial algorithms for shat-
tering polygonal objects in the plane and polyhedral ob-
jects in R4, They also described how shattering problems
are closely related to questions of stabbing and separa-
bility, which had been previously studied.

In this paper, we investigate the number of shatter-

ing hyperplanes required by different classes of point sets
in R4 (e.g. points in general position, and points in con-
vex position). For each class C of interest, we answer
the following combinatorial question: what are the min-
imum and maximum number of shattering hyperplanes
required by a set of n points in C? This question was
answered by [FMP90] for sets of points in N4, We sum-
marize their results in the following theorem.

Theorem 1: Let O be a set of n points in R4
1. O requires ({/n) shati¢ring hyperplanes, and
this bound is tight for some sets. The exact
bounds for d = 1, 2, and 3 arc respectively
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—1, [Ba=T7-1)], and [52+ R] whre

n
R:'\°/3n43+\/12l75’+(3—3n)?.

2.0 can be shattered by n — 1 parallel hyperplancs
(determined in O(nlogn) time). If all the points
of O are collincar, then n — 1 shattering hyper-
plancs are required.

Theorem 1 shows that a set of n points in R¢ can re-

‘quire between Q(/n) and n — 1 simtl‘orin”g ‘I'|y|wi"|)'l.uws
Tn Scction 2, we'show that the upper imit reniains $2n),

if the points required to be in general ])O‘ilfl()ll (no sul)sv
of d+ 1 points lies on a common hypcrphn(,) or gom ral
convex position. However when the ' points’ are in gen-
cral convex posmon the lower liniit becomes Q =y/n).

The exact uppcr limits are unknown for d > 3, but we

‘give cxarnplcs of sets that provide lower bounds. Up-

per bounds follow from the algorithin in Section 3 that
prodiices a hncar-s_l(,c shattering for a set of n points in
general position. ‘T'he shattering produced exceeds the
requirement of the worst known examples by at most a
constant that depends only on d.

2 Combinatorial Results

In this section, we show that there are sets of n points
in R¢ in general position that réquire Q(n) shatlering
hyperplanes (see Theorem 2). Tven if we further restrict
the points to liec on the surface of a sphere (d > "), there
are still sets that require (n) shattering hyperplanes
(sce Theorems 4 and 6 for d > 3, and observe that in 2,
every set of points on a circle requires §2(n) shattering
lines). Our Theorems are stated for n > d + 1, because
sets with fewer points require a more complicated defi-
nition of gencral position. However, our theorems still
hold for such sets, since it is casy show that any sel with
n < d points requires [log, n] shattering hyperplanes.

Theorem 2: In R, for any n >d+ 1, there exisls a
set O of n points in general position, such that any
shattering of O requires [-’—“——'] hyperplanes if o is

odd, and [4| hyperplanes il d is even.
b

Proof: This is true for any set in !, so assume d > 2
Let © = {p1,p2y--+,pu} be n > d + 1 points in N4



on the moment curve with p; = (¢;,t7,...,t¢) and
I} <13 <...<t,. Observe that O is the vertex set
of a cyclic polytope, so the points must lie in general
convex position. Consider a pair of neighboring points
pi and p;41. Any hyperplane that shatters the pair must
intersect the picce of the moment curve between p; and
Pu, since otherwise the pair would be in the same con-
nected region. There are n—1 pairs, and any hyperplane
can intersect the moment curve at most d times (Lemma
6.4 of [Ede87]). Therefore, [231] hyperplanes are re-
quired to shatter O. When d is even and n > d + 2,
any hyperplane h that intersects the moment curve d
times between p; and p, cannot also intersect the line
segment P1p, (Lemma 3). Therefore, [%] hyperplanes
are required. ]

Lemma 3: Given d + 2 points po, py, ..., pq, Pd+1 in RS
on the moment curve C with p; = (¢,¢?,...,1%) and
to <ty <...< 14 <lg4y. Let 7 be the hyperplane
defined by py, ..., pa, and let Popas1 be the line seg-
ment between py and pgyy. Then 7 N PopazT = 0 if
and only if d is even.

Proof: Observe that = divides C into d + 1 pieces
Co,C1, .. ., Ca, since there are d distinct single roots be-
tween 7 and C. Notice that pp lies on Co, and pgy lies
on C4. The even indexed picces lie in 7%, the closed half-
space “above” w. Similarly, the odd indexed pieces lie in
7, the closed half-space “below” x. Assume d is even.
T'his implies that Cy and Cy lie in #%. Notice that both
Po and pqy; lie in the interior of %, since there can only
be d intersections between 7 and C. Thus, PoPdy1 lies in
the interior of 7. If d is odd, Co and C; lie in opposite
half-spaces, so Popay1 must intersect w. .

R. Connelly provided the original proof that = N
PoPar1 = @ when d is even, using a different approach.

Theorem 4: In 3 for any n > d + 1, there exists a
set O of n points in general position on the surface
of a sphere, such that [1‘;—1] plancs are required to

shatter O.

Proof: Centrally project the positive half-parabola onto
the surface of the unit sphere. The intersection between
a plane and the surface of the sphere is a circle, so a
plane intersects the projected curve in at most three
points (Lemma 5). Therefore, any set of n points on
the projected curve requires [&;—‘-] shattering planes. =

Lemma 5: In ®2, any circle (z; — a)? + (23 - b)? = r?
can intersect the half parabola z; = 3,2, > 0 at
most three times.

Proof (P. Chew): Substituting for z; yields (z; —a)? +
(zf = b)* = r2. This simplifies to z} + (1 — 2b)z? —
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2az; + (a® + b% — %) = 0. The four roots must sum to
zero, since the z3 coefficient is zero. Therefore, there can
be at most three positive real roots. .

Theorem 6: In R4, d > 3, there exists a set O of
n points in general position on the surface of the
sphere, such that [|2|2] hyperplanes are required
to shatter O.

Proof (R. Connelly, J. Mitchell): Choose | 2] locations

on the surface of the sphere so that they lie in general

position. At each location, place three points that form

a triangle. Each triangle requires two shattering hyper-

planes. The triangles are chosen small enough so that no

hyperplane intersects more than d of them. Therefore,

[12[23] shattering hyperplanes are required. .

If | %] (d—1)-simplices are used instead of the trian-
gles, then a simple analysis yields the inferior [12][93]
bound. A more careful analysis may yield a superior
bound.

Theorems 4 and 6 showed that in R4, d > 3, there
are sets of n points on the surface of a sphere that re-
quire (n) shattering hyperplanes. However, the general
lower bound for such sets is Q( 4-{/n) shattering hyper-
planes. This bound is derived from the complexity of a
spherical zone in an arrangement of r hyperplanes, which
is at worst the complexity of the the zone of the hyper-
plane at infinity (O(r%-'), see Theorem 5.4 of [Ede87]).
Therefore, at least Q( ¢~{/n) hyperplanes are required to
shatter O (solve n = O(r4-1)).

3 Algorithmic Results

In Section 2, we provided examples of point sets in gen-
eral position that require Q(n) shattering hyperplanes.
In this section, we give an algorithm to find a shatter-
ing for any set of points in general position that uses at
most a constant more hyperplanes than the worst known
examples require (see Theorem 7). The constant is zero
for d < 2. We also provide a second algorithm that
matches the worst-case bounds for the special case in %3
when the points are the vertices of a cyclic polytope (see
Theorem 10).

Theorem 7: Let O be a set of n points in R4,
d>2. If n > 2M'°8dl then O can be shattered by

[5;2%‘1‘1] + [log; d] hyperplanes. In ®3,if n > 8,
O can be shattered by [%1 planes. Otherwise,
[log; n] hyperplanes suffice.

Proof: Let ¢ = [log,d]. Assume that n > 29. We
say that a hyperplane h bisects a point set S if h does
not contain any points of S and the two subsets of S
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produced by h differ in size by at most one. We begin
by finding a hyperplane that bisects O, producing sub-
sets O} and O}. Next, we find a ham-sandwich hyper-
plane that bisects each O}, producing 0%,...,0% (see
Lemma 8). We continue this process until we have de-
termined q ham-sandwich hyperplanes that split O into
04,...,0%,, such that the first n — 29 [ J subsets have
[ 21‘,-] points and the remainder have l.z«J points. This
process can be represented as a balanced binary tree,
with each node corresponding to a subset of O. The
root (level 0) is O. Level k of the tree has the 2* subsets
Of,...,0%,, each with either [ %] or | & ] points.

We will continue to bisect subsets until every point
of O is in a singleton set, which corresponds to filling out
the tree. Each singleton will be a leaf on level [log, n] -1
or [log;n]. Each non-leaf node corresponds to an in-
termediate subset that must be bisected by some hyper-
plane. Each subtree rooted at a level ¢ node has fz,,] -1
or |£| — 1 non-leaf nodes which must be bisected. So
n — 27 non-leaf nodes remain to be bisected.

Let A be the collection of active subsets. Initially
A= {0%,...,0%}. We choose a ham-sandwich hyper-
plane that bisects the d largest subsets of A. We then
update A and repeat this process until A contains the n
singletons. Except possibly for the last hyperplane cho-
sen, it is always possible to find d subsets of A to bisect,
since at any step only two levels of the tree can contain
active subsets, and each full level has 27 > d nodes. We
use f" =21 ] additional hyperplanes to complete the shat-
tering of O. Therefore, O can be shattered by g+ [-'1‘-'3—]
hyperplanes.

In R3, three planes can be found that divide @ into
eight pieces whose sizes differ by at most one (Lemma 9).
This improves the bound on the number of planes re-
quired to 3 + [&;—Q] = [—‘*‘—] It is unknown if a similar
result holds in R%. In R¢, d > 5, no such result is possi-
ble.

» If n < 29, then apply our initial process to determine
[log, n] ham-sandwich hyperplanes that shatter ©. =

In 8%, a ham-sandwich hyperplane can be determined
in O(n) time (see Theorem 14.6 of [Ede87]), so the algo-
rithm runs in O(n?) time. In R9, d > 3, the algorithm
requires O(n+1) time, since O(n%) time is required to
determine a ham-sandwich hyperplane. However in R3,
O(n") time is required if the initial procedure that splits
O into eight equal pieces is used.

Lemma 8: Let O0;,0;,...,04 be sets of points in R,
such that all the points in O = | J; O; are in general
position. There exists a hyperplane h that does not
contain any points of O and simultaneously bisects
each O;, 1 <i<d.

Proof: By Theorem 4.7 of Edelsbrunner[Edc87], there
exists a hyperplane k', such that neither open half-space
defined by h’ contains more than half the points of any
set O;, with A’ containing any remaining points. Observe
that A’ can contain up to d points of O, since all the
points are in general position. We will show by induction
on d, that it is possible to perturb &’ to produce the
desired hyperplane h.

In R!, the point A’ might be in Oy. If so, let p be the
closest neighbor in @, to A’. Choose h to be any pomt
in the open interval between A’ and p.

In R2, the linc ' may contain two points py, py of .
If so, let g be a point in the open interval between py and
p2 on h’'. We produce h by slightly rotating 1’ about g,
such that no other point of O is intersected. If only one
point lies on A’, then we produce h by slightly translat-
ing h'.

Assume that the lemma is true for R4, In R,
it is possible for d points to lie on the hyperplane &',
Let 4;,12,...,% be the indices of sets @; that contain
two or more pomt.s on I', and let Si = O, nh. Let
S=0Onhand S = S\(); Sj. Observe that k < |4]. By
the induction hypothosns, thcre is a (d—1)- hypvrplanv
g in S that does not contain any points of & and bi-
sects Sy, ..., Sk, S. We produce h by slightly rotating '
about g. .

Lemma 9: Let O be a set of points in general position
in R3. There exist three planes hy, by, hy that do
not contain any points of @, and split O into eight
pieces whose sizes differ by at most one.

Proof: Determine a planc h; that does not contain any
points of O and bisects O, producing ) and ¢,. By
Theorem 4.12 of Edelsbrunner[Ede87], there exist planes
hY, b that together divide each @; into four picces whose
sizes differ by at most one. Each plane b}, 1y may con-
tain two points. We produce hy and hj by slightly rotat-
ing A and hj, so that the sizes of the cight picces differ
at most by one. [

In R3, if the points of O define a cyclic polytope,
then we can shatter them slightly more efficiently. The-
orem 10 shows it is possible to match the bound ngon
in I‘heorem 2.

Theorem 10: Given a set O = {pi,pz,...,pu} of n
points in %3 on the moment curve C. If n > 11,
then there exist [1‘%1] planes that shatter .

Proof: We will prove the theorem by induction. We
assume that p; = (¢;,1%,13), and 0 < t; < 13 < ... < t,,.
Assume that O = {p1,p2,...,p13}. Let 7! be the
plane that intersects C once on cach of the following
open arcs: (t3,14), (t,L7), and (Ig,l9). 7' splits O into
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n Distinct Real Points in

Number of Shattering Hyperplanes

minimum worst known | achievable
required example algorithmically
R!, R4:Collinear n—1 n-—1 n-1

R2:General Convex Position [ %]

3] H

[t

[3(vBr=7-1)]

R2:General Position

[

R3:Cyclic Polytope

[25]

S [ NS
|| —
-

—
-

_—
3 [
[

N3:General Position on the
surface of a sphere

Qvn)

-
IWI

R3:General Position

[572 + R], where R =

-
'3
w
-
—
£l <E
WM WH-|
=) N =

§/3n—-3+ B+ (3-3n)

N:General Position, d odd

(/)

R*:Cyclic Polytope 2] [2] (2]

R4:General Position on the | Q( +~/n) [22] [!-‘;i:"—ﬂ- + [log, d]
surface of a sphere

R4:General Position, d even | Q(#/n) [4] [ﬂ;—"—’—ﬂ + [log, d]

n—zr::‘ﬁ d] + [logzd]

.—_.
S

el
-

—_—

Table 1: Minimum and maximum number of shattering hyperplanes required by different classes of point sets.

{11, P2, P, p7,ps} and {P4,I)5,PG,PQ,PloaPu,Pn,Pla}-
Let 72 be the plane that intersects C once on each

of the following open arcs: (t3,t3), (t4,t5), and
(t10,t11). «? further splits © into {p1,pa, pr,ps}, {pa},
{P4, P11, P12, P13}, and {ps,pe, po,p1o}. Let 7° be the
plane that intersects C once on each of the following open
arcs: (tl,tz),» (t7, is), and (tn,tla), 7l’3 further splits ]
into {p1, ps}, {p2, p7}, {p3}, {pPa, P13}, {Ps, p6}, {Po, P10}
aud {p11,p12}. Let 7% be the plane that intersects C once-
on cach of the following open arcs: (ts, t6), (19, t10), and
(i, t12). 7 completes the shattering of O. .Therefore,
there exist four planes that shatter O for 11 < n < 13.

Assume that the theorem is true for n = k — 3 > 11,

Let O be a set of k points, and O’ = O\{pq, ps, ps}. By o
the induction hypothesis, ¢’ can be shattered by I, a set”
of [&—P‘—'] planes. Consider the arrangement of planes
- '[Ede87] H. Edelsbrunner. Algorithms in Combinatorial

in I, along with the points of ©. The three cells that
contain py, ps, and pg are the only ones with two points.

Iivery other cell contains at most one point.’ So, one -

additional plane is sufficient to complete the shattering
of O. Thercfore, there exist [!‘—;—4] +1= f"—;—‘i] planes

that shatter O. .

A similar result holds for cyclic polytopes in ®4. The * v 70
base case is shattering between 13 and 16 points with =

four hyperplanes. These results should generalize to 9.

4 Conclusion

We conclude by summarizing our results in Table 1. Ob-
serve that there are still small gaps to be closed between
the bounds for the maximum number of hyperplanes re-
quired in R4, d > 3. A larger gap exists for points that
lie on the surface of a sphere in R9, d > 4.
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