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Primal canoes: optimal arrangements of
segments

H. Edelsbrunner!

Abstract: In an earlier paper we pre-'.

sented tight 7 1in + O(1) upper and lower
bounds on the common intersection of n
double wedges. This answered an outstand-
ing question concerning the (exact) space
complexity of an optimal algorithm which
computes all transversals (stabbing lines)
of a set of segments in the Euclidean plane.
The structure used in computing the lower
bound implicitly defines an arrangement of
segments in the plane which we call the pri-
mal canoe. We wish to emphasize the prop-
erties of the primal canoe, and to present a
new construction which exhibits the same
complexity. We also wish to provide exam-
ples of primal canoes.

1 Introduction

Let S be a set of n closed line segments in
the Euclidean plane E2. A line intersecting
all segments of S is called either a transver-
sal or a stabbing line. There is a natural
duality, D : E? & E? : which maps point
(71, 72) and line y = mz — y; see [Ede87].
This map carries a segment s onto a union
of lines called the double wedge D(s). If s
is non-vertical then D(S) contains two ex-
tremal lines, intersecting at a point called
the center of the wedge and corresponding
to the endpoints of S. These lines deter-

1Univ. of Illinois at Urbana-Champaign
2Univ. of Kentucky, Lexington
3SUNY at Stony Brook

- J. W. Jaromczyk?

J. W. Penny? G. Swiatek?

‘mine four regions; these two regions which

do not contain the vertical line form a dou-
ble wedge. Each point in the double wedge
corresponds to a stabbing line of the corre-
sponding segment in the primal space. This
observation was applied in [EMP*82] to ob-
tain an optimal algorithm which computes
all transversals of a set of n segments in
the Euclidean plane. The space complex-
ity of this algorithm depends on the nuin-
ber of edges in the common intersection of
double wedges corresponding to the input
segments.

In [EMP*82] it was shown that this num
ber is not greater than 8n — 4 and an ar-
rangements with 6n —2 edges was given. In
[EJS89] the optimal arrangements of dou-
ble wedges was studied and the tight bounds
of 73n+0(1) were proven (see also [JS91]).
In particular, the arrangement, called ca-
noe, presented in [EJS89] exhibited a col-
lection of wedges having maximal number
of edges in the polygons bounding the com-
mon intersection of wedges. This number
of edges was shown to be 15k —6 for a canoe
consisting of 2k wedges.

2 Primal canoes

We will turn our attention to primal space
and the original problem of finding com-
mon stabbing lines. We wish to emphasize
the properties of arrangements of line seg-
ments that maximize the number of tan-



gent stabbing lines; we will call them pri-
mal canoes. The stabbing line is called tan-
gent if it passes through exactly two seg-
ment endpoints. In particular, we will show
a new construction and examples of primal
canoes and we will derive the following:

Theorem  There is an optimal arrange-
ment of 2k segments that admits 13k — 8
tangent stabbing lines.

The number stated in the above theo-
rem is optimal up to a small additive con-
stant. The lower bound is realized by a
delicate and sophisticated construction.

There is a clear duality between stab-
bing lines and the number of edges in the
polygons of the common intersection of dou-
ble wedges (so-called stabbing region). To
this end, consider that a construction that
maximizes the number of edges in a collec-
tion of polygons also maximizes the num-
ber of vertices. Some vertices are shared by
two polygons, which complicates counting
them. Careful charging shows that there
are 13k — 8 such vertices in a cance. A
point is a vertex precisely when it belongs
to exactly two of the lines determining the
wedges, and is interior to all other wedges.
In primal terms, these vertices correspond
to stabbing lines passing through exactly
two endpoints of the collection of segments.
This shows that there are at most 13k — 8
tangent transversals through the 4k end-
points of the segments.

Since the canoe has the property that
any two wedges have common interior, we
see that the segments in the primal space
must be pairwise intersecting. Thus, of the
13k — 8 tangent transversals, 2k are simply
embeddings of the segments.
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to problems in combinatorial geometry. For
example, a problem which relates to our re-
sults is investigated in [ELSS73] and [EW85]:
given 2k points in E?, how many parti-
tions into two sets of respective k points are
there such that there is a line which sepa-
rates the k points of the one set from the
k points of the other set. The only bounds
known on the maximal number of such par-
titions are Q(klog k) and O(kvk/ log* k);
see [PSS89]. The results of this paper show
that the number of such partitions is ex-
actly 13k + O(1) if we require in addition
that the 2k points are paired and a bal-
anced partition is counted if and only if no
pair is contained in either set.

Another combinatorial problem in ge-
ometry which relates to our results was con-
sidered in [KLZ85,ES87). They studied the
number of permutations in which a line can
intersect n non-intersecting segments in E2.

3 Realization of canoes

At the end of the abstract we give examples
which demonstrate both dual and primal
canoes for small values of k. The new ar-
rangements of wedges and line segments are
called asymmetric canoes and asymmetric
primal canoes, respectively. The illustra-
tions were prepared using a system allow-
ing the visualization of the duality process.
It permits simultaneous viewing and ma-
nipulation of structures in primal and dual
spaces. The user is permitted to indepen-
dently control magnification and aspect ra-
tios of the windows holding the two scenes
(primal and dual), which is crucial due to
the widely varying scales of features, all of
which must be precisely located. For exam-

There are several connections of our work ple, the portion shown of the 3-asymmetric
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canoe is roughly 1800 units wide and 1800
units high, while that of the primal canoe

‘is roughly 2000 units wide and 6 units high.

The most recently added features of each
inductive step are denoted by dashed lines,

with corresponding features in the same style.

The one exception to this rule is the 3-
asymmetric canoe. Due to its scale, not
all features of the 3-asymmetric primal ca-
noe can be shown. The finely dashed line
running from center left margin, which is a
leg of the first wedge placed, has its center
about 70 inches to the left of the margin.
This center’s placement is controlled by the
point of intersection of the two nearly par-
allel lines appearing just below the finely
dashed line. Similarly, the segment pro-
jecting downwards from the 3-asymmetric
canoe has been clipped; to give an idea of
its scale, it is roughly 400 times longer than
the nearly horizontal segment in this primal
canoe.

Note also that the primal canoes can-
not be comprehended at any single scale.
At any scale where the endpoints of the
largest features are visible, the smallest fea-
tures are not. For example, in the 4-canoe,
the longest segment is roughly 100 times as
long as the shortest.
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