On the Optimal Binary Plane Partition
for Sets of Isothetic Rectangles*

Fabrizio d’Amoret Paolo Giulio Franciosat

Abstract

We present ‘'a Binary Space Partition algorithm for a set of disjoint isothetic rectangles. It
recursively splits the set by means of isothetic cutting lines, until no two rectangles belong to
the same portion of plane. Rectangles intersected by a cutting line are split. We show that
given n rectangles it is always possible to build a Binary Space Partition with no empty regions
by means of no more than 6n — 1 cuts and giving an O(nlogn) space and time algorithm for
doing this.

We generalize and improve a previous result achieved on isothetic line segments by Paterson
and Yao [3].

Keywords: Analysis of algorithms, computational geometry, binary space partitions, isothetic
rectangles.

1 Introduction

Given a region R containing a set of objects, the Binary Space Partition (BSP) problem consists
in recursively partitioning R by a hyperplane into two regions, continuing this process until each
obtained region intersects at most a fixed number of objects [1]. The number of these regions is
the size of the BSP.

If an object is intersected by a cutting hyperplane it is split into two disjoint objects whose
union returns the intersected one.

In this paper we consider the problem of finding a BSP of a set of n disjoint isothetic rectangles
of R?, where isothetic means that each edge is parallel to a coordinate axis (for a more precise
definition see [5, pages 321-322]). In [3] it was proved that for a set of n isothetic line segments of
R? a BSP always exists of size 4n. In [4] a O(n log? n) time, O(nlogn) space algorithm is given for
finding a BSP of size 3n. Although such algorithm can be applied to the problem of finding a BSP
of a set of n disjoint rectangles (by considering the 4n line segments which constitute rectangle
edges) it generally leads to BSPs with empty regions (i.e. intersecting no rectangle), and the size
can grow up to 12n.

In this paper we prove that a BSP of size 6n for n disjoint isothetic rectangles always exists,
and give an O(nlogn) algorithm for building the partition. We extend the technique used in [3]
and improve the algorithm given in [4].
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Figure 1: The decomposition of a rectangle.

2 Preliminaries

A rectangle is a closed interval of R2. A line A and a rectangle Q are adjacent if and only if A
contains a side of Q. Moreover A cuts Q if and only if A intersects the interior of Q.

Any isothetic line which splits a given region into two (sub-)regions is called a cutting line.

A rectangle is high-anchored if it is the lower portion of a larger rectangle which has been hori-
zontally split. Anchoring properties are also inherited when possible, in the sense that a rectangle is
high-anchored also if it is the upper portion of a high-anchored rectangle that has been horizontally
split. The low-anchored, right-anchored and left-anchored rectangles are analogously defined. For
a region R we will denote these sets respectively by high(R), low(R), right(R) and left(R). Since a
rectangle may be anchored on one or more edges the sets are not necessarily disjoint each other.

Now we introduce a coloring of rectangles, according to the following rules (see fig. 1):

¢ Rectangle Q is WHITE if and only if it is one of the original rectangles, i.e. it has never been
split;

e Q is H-GREEN (V-GREEN) if and only if it is obtained by horizontally (vertically) cutting a
WHITE rectangle;

e Q is a BRIDGE if and only if it is anchored on two opposite edges;

e Q is H-YELLOW (V-YELLOW) if and only if it is obtained by horizontally (vertically) cutting
a H-GREEN (V-GREEN) rectangle and it is not a BRIDGE;

e Q is RED if and only if it is obtained by vertically (horizontally) cutting a H-GREEN or
H-YELLOW (V-GREEN or V-YELLOW) rectangle.

A horizontal (vertical) edge of a region R is GREEN if and only if all the rectangles anchored on
it are H-GREEN (V-GREEN).



3 An algorithm for the optimal plane partition

The algorithm finds a BSP of a region R by recursively cutting regions. It is assumed that R has
a GREEN edge, and without loss of generality we suppose that it is on the right.

Algorithm: Partition

1) If R contains just one rectangle then return.

2) Let Q be the longest rectangle in left(R) or, if left(R) is empty, the rectangle in R having
the leftmost right edge (break ties arbitrarily). Let p be the vertical line adjacent to
the right edge of Q. Let R) and R, be the portion of R respectively to the left and to
the right of p.

3) If there are no rectangles intersecting R, then let o be the horizontal line adjacent to Q
creating no empty regions. Cut R by o into R; and R,. Partition (R1). Partition (R;).
Return.

4) Cut R by p into R and R,. Partition (Ry).

5) If Q is not the only rectangle intersecting R, then let ¢ be the horizontal line adja-
cent to () creating no empty regions: cut R, by o into R; and R,. Partition (Ry).
Partition (R,).

6) Return.

The following lemmata show important properties of algorithm Partition.
Lemma 3.1 Algorithm Partition is always invoked for partitioning regions with a GREEN. edge.

Proof. We will separately analyze the consequence of the various cuts carried out by the algorithm.

For the cuts at step 3, o is a GREEN edge for both R; and Ry, since it does not cut any anchored
rectangle.

With regard to the cuts at step 4, the right edge of R, is GREEN since it coincides with the right
edge of R. Note that since in this step no call for partitioning R) is done, we do not need GREEN
edges for R) (if R needs to be partitioned this will be done in step 5).

Finally, for the cuts executed at step 5, we observe that ¢ is a GREEN edge for both R; and R,
since it cuts no anchored rectangle. (u]

Lemma 3.2 Algorithm Partition does not create empty regions.

Proof. It directly derives from the algorithm. o

Lemma 3.3 Algorithm Partition decomposes each original rectangle in at most 6 rectangles.

Proof. We prove that a rectangle can only be decomposed as shown in fig. 1 (suppose without
loss of generality that the first cut of a rectangle is horizontal). More precisely, RED and BRIDGE
rectangles are never cut, and H-YELLOW (V-YELLOW) rectangles can only be vertically (horizontally)
cut.

With reference to algorithm Partition, cuts carried out in steps 3 and 5 split no rectangle. On
the contrary, cuts executed at step 4 can intersect rectangles. However it is worth observing that
p can only intersect:



® WHITE rectangles;
e rectangles in right(R), which cannot be YELLOW or RED because the right edge of R is GREEN;

* at most two H-YELLOW or H-GREEN rectangles in high(R) U low(R), which will be vertically
cut. These two rectangles cannot be RED, otherwise they should be anchored on a GREEN
edge of R.

It is immediate to see that vertical BRIDGEs cannot be cut and, since the right edge is GREEN,
there is no horizontal BRIDGE in R. m]

We can now show that a BSP with size not greater than 6n always exists.

Theorem 3.4 Algorithm Partition partitions a region containing n rectangles in at most 6n re-
gions, each containing ezactly one rectangle.

Proof. It directly derives from lemma 3.2 and lemma 3.3. : (=]

4 Complexity Analysis

The algorithm makes use of some data structures, both static and dynamic. The former are useful
for representing geometrical properties of the original set of rectangles, while the latter represent
the sets of the anchored rectangles for the regions currently being partitioned.

More precisely, two static layered segment trees [6] representing the original rectangles are used.
The horizontal one stores the horizontal edges according to their abscissae. Each node stores in
a balanced data structure the pointers to the representations of the rectangles according to their
ordinates. The vertical layered segment tree is analogously organized.

Moreover, the algorithm uses four static layered range trees [5, pages 84-85], in which the
midpoints of respectively the left, right, high and low edges of the original rectangles are stored.

The only dynamic data structures are priority search trees [2): for each region R there are four
of them, representing sets left(R), right(R), high(R) and low(R).

The priority search tree for left( R) consists of a binary search tree whose leaves contain rectangles
in left(R) sorted by ordinates; any internal node v also points to the leftmost rectangle contained
in the subtree rooted at v that is not pointed to by any ancestor of v. These priority search trees
are not complete binary trees, but their height is always not greater than [log, n]. Priority search
trees corresponding to high(R), low(R) and right(R) are analogously organized.

Without loss of generality we will refer in the sequel to a vertical cut which splits R into R; and
R..

The priority search trees for left(R;) and right(R;) are respectively those for left(R) and right(R),
the trees for high(R)) and high(R,) are obtained by splitting the one for high(R), and those for
low(R)) and low(R;) are obtained by splitting the one for low(R).

While splitting a priority search tree we do not need to rebalance the structure, because it
suffices that its height do not grow. Hence the splitting process can be carried out in O(logn) time.

The trees for right(R)) and left(R;) are built by searching the horizontal layered segment tree
for the rectangles intersected by the cutting line. The search process takes time O(logn + k), where
k is the number of retrieved rectangles. It returns the rectangles as a sorted set, thus allowing the
construction of the priority search trees in O(k) time. These trees are built as complete binary
trees.



We will now describe in detail how the structures are used while executing algorithm Partition.
We will refer without loss of generality to the case in which the GREEN edge is on the right.

Step 1 can be performed by visiting the priority search trees associated to R until two rectangles
are found (hence R contains more than one rectangle). If less than two rectangles are found, we
need to visit one of the layered range trees in order to discover whether one or two WHITE rectangles
are contained in R. This takes time O(logn).

Rectangle Q in step 2 is found in constant time on the priority search tree associated to left(R)
or, if it is empty, it can be found in the layered range tree associated to the midpoints of the right
rectangle edges. On this tree we start answering a orthogonal range query on R, but we stop as
soon as the first point is found, thus spending O(logn) time.

Emptiness queries in steps 3 and 5 can be answered in O(log n) time by a process analogous to
the one for testing the presence of just one rectangle in R.

Split operations in steps 3, 4 and 5 have already been described.

Theorem 4.1 For a set of n disjoint isothetic rectangles, a Binary Space Partition of size 6n can
be found in O(nlogn) worst case time and space.

Proof. The layered segment and range trees can be build in O(nlogn).

The time complexity of one execution of algorithm Partition, not considering the recursive
calls, is O(logn + k). Since the procedure is called at most 6n — 1 times, and it is shown in
lemma 3.3 that each original rectangle is split at most in 6 rectangles, the overall worst case time
complexity is O(nlogn).

The priority search trees corresponding to a region R need O(r) space, where r is the number
of rectangles in R, leading to overall O(n) space. The layered range trees and the layered segment
trees need O(nlogn) space. (m]
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