Optimal Bipartitions of Point Sets (Extended Abstract)
Jon Rokne } Shangzhi Wang ! Xiaolin Wu *

Summary Optimal bipartition of a set of points in the plane under various measures is studied.

Several improvements in time and space complexities are made over existing algorithms.

1 Introduction

Bipartition of a point set is the simplest form of the K -clustering problem, i.e., when K = 2. It has
been extensively studied in the framework of computational geometry [1,2, 3,9, 6, 11, 12]. Let S be
a set of N points in the plane, and C(S) be a dissimilarity measure of the points in S. The common
choices of C(S) in clustering practice are: the variance of S (the sum of the squared distances of
all pairs of points in S divided by the population IS]), the weighted variance of S (variance timed
by |S]), the perimeter, the diameter, and the area of the convex hull of S. In the sequel the terms
perimeter, diameter and area will be used in the context of a point set with the implication that
these quantities are defined on the convex hull of the point set. The goal of optimal bipartition of
a point set is to split S into two subsets S; and S, such that a cost function F(C(S1),C(S2)) is
minimized. In this extended abstract we consider two natural cost functions: F = C(S1) + C(S2)
and F = max{C(S1), C(S2)}. Thus we have two optimization criteria: minimum sum and minimum
* maximum, and shortened to minsum and minmax in the remainder of the text.

For the minmax criterion and the measure of set diameter, a very efficient O(N log N) algorithm
based on the maximum spanning tree was proposed by Asano, Bhattacharya, Keil and Yao [2],
which was an improvement over an earlier algorithm due to Avis [3]. An O(N?) algorithm was given
by Monma and Suri to minimize the sum of two set diameters. Recently Mitchell and Wynters
[12] proposed an O(N3) time and O(N) space algorithm to compute optimal bipartitions of point
sets for minisum and minmax criteria and for the measures of set perimeter and area. They also
gave an O(N?) time, but O(N?) space algorithm for minsum perimeter, minsum area, and minmax
perimeter bipartitions. In this extended abstract we present a compromise between the time and
space complexities for the problem. An O(N2log N) time and O(N) space algorithm is devised
for both minsum and minmax criteria and for cluster dissimilarity measures of set perimeter and
area. We will also give an O(N?) time and O(N) space algorithm for optimal bipartitions under the
variance-based cluster measures and an O(N?) time and O(N?) space algorithm for the convex-hull-
based cluster measures. The proposed algorithms are simple both conceptually and structurally,

*Department of Computer Science, University of Calgary, Calgary, Alberta. Supported by the NSERC.
tDepartment of Mathematics, Beijing Teacher’s College.
{Department of Computer Science, University of Western Ontario, London, Ontario. Supported by the NSERC.

11



12

and hence can be implemented with ease.

2 Optimal Bipartition Algorithms

All our algorithms will be developed under the following important geometric property of optimal

bipartition of a point set.

LEMMA 1 For variance-based and conver-hull-based measures C and under the minmaz or min-

sum criterion, optimal bipartition of S must yield linearly separable S; and S,.

Proof. Trivial and omitted. O

Due to the above lemma, we only need to examine all possible bipartitions formed by a line
separator. Since the line connecting any pair of two points in S defines a bipartition, there are O(N?)
different bipartitions. Then a naive algorithm can evaluate the cost function for each bipartition and
find the minimum. This requires O(N2M) time where M is the number of operations to evaluate
the cost function. Clearly, M = O(N) for variance-based cluster measures and M = O(N log N )
for convex-hull-based cluster measures per F' evaluation, if the O(N?) F evaluations required by
the bipartition enumeration are not organized. To improve the efficiency we need an incremental
scheme of bipartition enumeration. If only O(1) points change their cluster memberships between
two consecutive bipartitions, then the cost function F can be updated in O(1) time for variance-
based measures, and in O(log? N) time for convex-hull-based measures by using Overmars and van

Leeuwen’s dynamic convex hull maintenance technique [13].

2.1 Topological sweep

We use geometric duality to map points p; € S into lines L;. Then the bipartition given by the
line p;p; in the original plane corresponds to the intersection point Lij of L; and L; in the dual
plane. The N dual lines form O(N?) intersections which are O(N2) bipartitions. After the above
transform, we can use the topological sweeping technique [7] to sweep the arrangement of the O(N)
lines in the dual plane in O(N?) time and O(N) space. Effectively we enumerate all bipartitions in
the original plane by the sweep. A beauty of the topological sweep is that the sweeping topological
line marches in so-called elementary step. The elementary step advances from I;j to either Ij; or Ij;.
This means that a new bipartition is visited by rotating the line separator anchored at either p; or
pj. Consequently, either p; or p; changes its cluster membership in such a step. O(1) time suffices
to update the cost function from the previous bipartition to the current one. Using topological
sweeping we achieve an incremental enumeration of all bipartitions without explicit sorting, and

thus conclude the following.

THEOREM 1 Under the criteria of minsum variance, minsum weighted variance, minmaz vari-
ance and minmaz weighted variance, the optimal bipartition can be found in O(N?) time using O(N)

space.



sweeping line

Figure 1: Sweep from an edge on a convex layer to enforce monotonic growth of a subset.

It is possible to sweep all faces of an arrangement of N hyperplanes in £¢ in O(N?) time [7]. This
means that the above algorithm can be generalized to d-dimensional space with a time complexity
of O(dN?) to compute the optimal bipartition of a set of N d-dimensional points. The coefficient d
is there because O(d) operations per update are required in %°.

Unfortunately, the above technique cannot improve the angular sweeping algorithm for the
convex-hull-based measures since the O(log? N) cost per point for dynamic convex hull mainte-
nance overrides the O(log N) cost per point for sorting. But the improvement can be made by

another sweep arrangement.

2.2 Layerwise angular sweep

The previous angular sweep and topological sweep generate an arbitrary sequence of insertion and
deletion of points into and from the convex hulls of S; and S;. This necessitates the use of hull
tree data structures to dynamically maintain the convex hulls. However, on a second reflection,
we can enforce S; and S; to grow (shrink) monotonically, thus make a uniform sequence of point
insertions. First pick an edge g;¢2 of the convex hull of S and sort all other points p; € S by the
angles Zp;q1q2 (see Figure 1). Then we sweep the line separator counterclockwise from ¢, g2 to ¢;qo,
where as marked in Figure 1 gq is the vertex of the convex hull of S to the right of ¢;. Call the
point set to the left of the sweeping line S; and the remaining points belong to S;. Clearly, S,
monotonically grows and S, monotonically shrinks during the sweep.

Now consider how to dynamically maintain the convex hull of S; and incrementally compute the
area and the perimeter of S;. Figure 2 is a snap shot of the angular sweep starting from q;q,, where
q1a is the previous line separator and ¢, b is the current line separator. Points a and b are adjacent
in the sorted list of angles of p; with respect to 9192. It is clear from Figure 2 that ¢;b must be an
edge of the new convex hull of S; which just absorbed b, i.e., ¢; is always the support of the convex
hull of previous S; with respect to the current point. In order to compute the convex hull of the
new Sy, we need to find the other support ¢ on the previous hull. To this end we walk along the
old hull of S; clockwise from point a until the support ¢ is found. Then we delete the chain gya---¢

13



14

sweeping line

Figure 2: Dynamic convex hull updating and measuring.

from the old hull and replace it by gibc. In doing so we can compute the length of the chain qia---c
if perimeter measure is used or the area of the concave region g, a- - - cbg if the area measure is used
for the purpose of updating the cost function. The cost of maintaining the convex hull of S; and
measuring the hull at the current step is proportional to the length of deleted chain ga---c. We
can then charge the cost to the deleted Sy hull points. Since the deleted points can never resurface
in the sweep, the total cost of dynamic S; hull maintenance and measurement for marching the line
separator from ¢1¢2 to g1go is only O(N). So despite that we may spend O(N) time at a single step
the amortized cost is still O(1) per step.

The above process and analysis also apply to S; if we sweep the point set from q190 to q1¢2
clockwise. By combining the results of the two sweeps of opposite directions we can find the best
bipartition among all possible bipartitions formed by the line separator q1pi, 1 <i < N. After this
done we should remove ¢; from further considerations.

We will march on the convex hull of S, choosing the hull vertices go, g3, <eeee as the new pivot
in that order, and for each pivot carry out the same sweeps as described above for ¢;. After all
the vertices on the convex hull of S are so processed and removed from further considerations, we
will move to the second convex layer of S and sweep angularly the remaining points of S from
consecutive edges of the second convex layer in the same way as we did to the first convex layer
(the convex hull) of S, and then move to the third, fourth, ...... convex layers until all points are
processed. In summary, the proposed algorithm sweeps convex layers inward, and then sweeps edges
on a given convex layer. Starting from a given edge on a give convex layer the algorithm enumerates
bipartitions radially.

All together 2N angular sweeps are carried out: N counterclockwise and N clockwise sweeps for
51 and S; respectively with each p; € S being a pivot of angular sweeps once. Thus O(N?log N)
time is required to construct N sorted lists of angles. As we argued before, the amortized cost for
incremental evaluation of the cost function during an angular sweep is O(1) per step, or O(N) per
sweep, and it amounts to O(N?) for N sweeps. The convex layers can be constructed in O(NlogN)

time [5]. Thus the cost of sorting dominates and we reach the following conclusion.



THEOREM 2 Under the criteria of minsum sel perimeter, minsum set area, minmaz set perimeter

and minmaz set area, the optimal bipartition can be found in O(N2log N) time using O(N) space.

Compared with the O(N?) time and O(N?) space algorithms in [12] which are based on visibility
graphs, our layerwise angular sweeping algorithm is simple both conceptually and structurally. No
complicated data structures are required. In fact, the dynamical maintenance of the convex hulls
of S; and S; for our sweeping algorithm is simpler and faster than Preparata’s on-line convex hull
algorithm [14]. The former needs O(1) time per update (after amortization) while the latter needs
O(log N) per update. The former can simply represent the convex hull as a linear list while the

latter needs a concatenable queue.

2.3 Layerwise sweep without sorting

As we saw above if the sweep is organized as such that a subset grows monotonically, then the
dynamic convex hull maintenance needs to handle insertions only. As the result, an amortized O(1)
cost per update is achieved for both dynamic hull maintenance and measuring (computing the area
or diameter of each subset). So the enumeration of O(N?) bipartitions needs only O(N?) time.
The additional O(log N) factor is incurred by the angular sortings, a preprocessing to facilitate
monotonic growth of subsets. If we can avoid explicit sorting while still having monotonic growth
of subsets, then the time complexity of optimal bipartition for convex-hull-based measures can be
reduced to O(N?). This is indeed possible if we are willing to use more space.

As in subsection 2.1 we can employ geometric duality to transform points pi into lines L;, and lines
Pip; to points I;; which correspond to different bipartitions. When we march along an arbitrary line
L; in the dual plane across points I;;, i, I; - - -, effectively we rotate a line separator anchored at p;
to pass pj,pi,pi - - - and in that order. However, points p;, pi,p; - - - appear, in general, alternatingly
at two different sides of p;, corresponding to an arbitrary schedule of insertions and deletions in and
from a subset. But if we march along a line L, whose dual is a vertex ¢ on the convex hull of S
in the original plane, then we can guarantee that all the points on L, so passed are inserted into a
same subset (equivalently deleted from the other subset). The order of insertions is the same as the
order of points on L,. This means that the line arrangement in the dual space implicitly contains
the order information we need.

Now we are ready to present an O(N?) algoﬁthm for optimal bipartition for convex-hull-based
measures. We compute and save the line arrangement of L; in O(N?) time and O(N?) space using
any of the algorithms in [10, 8]. We also construct the convex layers of p; in the original plane, and
traverse the first layer (the convex hull of S) by consecutive edges and then the second, third, ......
layers. Suppose that g,¢, is the current edge on the current convex layer. We march in the dual
plane from the intersection point of L,, and Ly, and along the line L,,. Then the sequence of points
on the line L,, in the dual plane so visited gives us the exact sequence of bipartitions generated by
the angplar sweep as described in subsection 2.2, only this time no explicit sorting is required. Note

that we need to march along L,, twice in two opposite directions, corresponding counterclockwise

15



16

and clockwise angular sweeps. In this way we achieve monotonic growth of S; or S,, thus O(1)
cost per update suffices. Once L,, is finished, i.e., after all bipartitions given by the line ¢;p; are
considered, we delete L,, from the line arrangement. Then the algorithm proceeds to the next edge
on the current convex layer, and to the next convex layer, and so forth. Clearly, the deletion of line
L, from the line arrangement takes O(N) time. The cost of angular sweeps in the original plane is

the same as in subsection 2.2, thus the following theorem.

THEOREM 3 Under the criteria of minsum set perimeter, minsum set area, minmaz set perimeter

and minmaz set area, the optimal bipartition can be found in O(N?) time using O(N?) space.
Acknowledgement

A constructive suggestion from Professor Derick Wood is deeply appreciated.

References

[1] A. Aggarwal, H. Imai, N. Katoh, and S. Suri, “Finding k points with minimum diameter and
related problems”, J. of Algorithms, vol. 12, pp. 38-56, 1991.

[2] T. Asano, B. Bhattacharya, M. Keil, and F. Yao, “Clustering algorithms based on minimum
aliggsma.ximum spanning trees”, Proc. jth ACM Symp. Computational Geometry, pp. 252-257,

(3] D. Avis, “Diameter partitioning”, Disc. and Comput. Geom., vol. 1, no. 3, p- 265-276, 1986.

[4] E. Boros and P. L. Hammer, “On clustering problems with connected optima in Euclidean
spaces”, Discrete Math., vol. 75, pp. 81-88, 1989.

[5] B. M. Chazelle, “Optimal algorithms for computing depths and layers”, Proc. 21st Allerton
Conf. on Comm. Control and Comput., pp. 427-436, 1983.

[6] F. Dehne and H. Noltemeier, “A computational geometry approach to clustering problems”,
Proc. 1st ACM Symp. on Computational Geometry, pp. 245-250, 1985.

[7] H. Edelsbrunner and L. J. Guibas, ”Topologically sweeping an arrangement” J. of Comput.
Syst. Sci., vol. 38, pp. 165-194, 1989.

(8] H. Edelsbrunner, J. O’Rourke, and R. Seidel, “Constructing arrangements of lines and hyper-
planes with applications”, STAM J. Comput. vol. 15, pp. 317-340, 1986.

[9] V. Capoyleas, G. Rote and G. Woeginger, “Geometric clustering,” J. Algorithm, vol. 12, pp.
341-356, 1991.

(10] B. Chazelle, L. J. Guibas, and D. T. Lee, “The power of geometric duality,” Bit, vol. 25, pp.
76-90, 1985.

[11] .} .99H1ershberger and S. Suri, “Finding tailored partitions”, J. of Algorithms, vol. 12, pp. 431-463,

[12] J. S. B. Mitchell and E. L. Wynters, “Finding optimal bipartitions of points and polygons,”
Lecture Notes in Computer Science no. 519, also in Proc. of 2nd Workshop on Algorithms and
Data Structures pp. 202-213, 1991.

[13] M. H. Overmars and J. van Leeuwen, “Maintenance of configurations in the plane,” J. Comput.
and Syst. Sci., vol. 23, pp. 166-204, 1981.

[14] F. P. Preparata, “An optimal real time algorithm for planar convex hulls,” Comm. ACM, vol.
22, pp. 402-405, 1979.



