23

Efficient Visibility Queries in Simple Polygons*

Prosenjit Bose!
Jit@muff.cs.mcgill.ca

Abstract

We present a new method of decomposing a simple polygon
which allows the preprocessing of the polygon to efficiently
answer queries of various forms. Using O(n® log n) preprocessing
time and O(n®) space, we can, given a query point g inside or
outside the polygon, recover the number of vertices visible from
g in O(logn) time. Also, we can recover the visibility polygon
of g in O(logn + k) time, where k is the size of the visibility
polygon. '

The key notion behind the decomposition is the succinct
representation of visibility regions. We show that there can
be ©(n®) distinct visibility regions, each of which can see
©(n) points. The main technical theorem is that there can
be ©(n?) regions with minimal visibility sets, thus permitting
preprocessing in O(n® logn) time and O(n®) space. The notion
of visibility regions and their use in visibility polygon queries
has been developed independently by Guibas, Motwani and
Raghavan(3].

These techniques are extended to handle other types of
queries. Given m fixed points in the plane, and a polygon of size
n, we can, given a query point g inside or outside the polygon,
recover the number of fixed points unobstructed by the polygon
boundary in O(log mn) time and recover the visible set of size k
in O(logmn + k) time, with O(m?(m + n)logn) preprocessing
time and O(m?(m + n)) space.

We also explore line segment queries. Given a line segment
inside or outside a polygon of size n, we can recover its weak
visibility set and more generally its weak visibility sequence in
O(klog n) time, using O(n® logn) preprocessing time and O(n®)
space. To answer weak visibility line segment queries on a set
of m fixed points in the plane, we need O(k log mn) query time,
given O(m?*(m+n)logn) preprocessing time and O(m?(m+n))
space.

1 Introduction

The notion of visibility among geometric objects is one of
the most fundamental topics in computational geometry.
Many different visibility problems have been studied in

the literature. O’Rourke’s book [6] surveys many visibility

problems that have been investigated.

In this paper, we consider several questions concerning
visibility, all stemming from the following question: Given a
query point g in the interior of a simple polygon, P, find all
the vertices of P that see g. The single- shot version of this

*Research supported in part by NSERC and ITRC

tSchool of Computer Science, McGill University, Montreal, Que-
bec, Canada

$Department of Computer Science, University of Waterloo, Wa-
terloo, Ontario, Canada

Anna Lubiw!
alubiw@mayiag.waterloo.edu

J. Ian Munrot

tmunro@dragon.waterloo.edu

problem is a special case of the visibility polygon problem
and it can be solved in O(n) time where n is the number
of vertices in the polygon. In this paper, we develop a
data structure that can be used to answer repeated queries
efficiently. After the data structure has been built, the
query algorithm can find the number of vertices of P which
see ¢ in O(logn) time, where n is the number of vertices of
P. Listing the vertices takes O(logn + k) time, where k is
the number of vertices.

The succinctness of the data structure is based on some
properties of the polygon decomposition into visibility re-
gions. Several key properties of this polygonal decomposi-
tion method allow us to solve extensions of the original
problem, as well as some different problems, quite effi-
ciently.

We uncover some properties of the decomposition
which allow us to recover the whole visibility polygon of
the query point as opposed to just the visible vertices. The
visibility polygon represents all the points in the polygon
that see the query point. Informally, we can think of
the query point ¢ as a light source in a dark art gallery,
represented by P, and we want to know what area of the
gallery is lit by g. The notion of visibility regions and
how to use them to handle visibility polygon queries was
discovered independently by Guibas et al. [3]. Although
they use the visibility decomposition to solve a problem
known as the “Robot Localization Problem”, where the
reverse question is asked: Given a point and its visibility
polygon with respect to polygon P, determine where the
point is in P, they also show how to solve the visibility
polygon recovery problem.

We generalize from visibility of vertices to a set of fixed
points of interest. Given a fixed set of points, S, in the
plane, a polygon P, and a query point g, we are interested in
the subset of S seen from g, unobstructed by the boundary
of P. Informally, we can think of the points of S as light

~~seurces-in-an-art gallery, represented by P, and we wish

to know which lights are shining on an observer, g, in the
gallery.

We are able to extend the structure to deal with query
points either inside or outside a simple polygon P, and solve
all of the above situations. An alternative approach using
persistent data structures and visibility regions is explored.

The visibility decomposition structure reveals much
geometric information about the polygon. We study some
applications of the visibility decomposition with respect
to line segment queries. In particular, we look at weak

24

visibility queries with respect to line segments as opposed
to strong visibility. A point is weakly visible from a line
segment if it sees any part of the line segment, and it is
strongly visible from the line segment, if it sees the whole
line segment.

2 Overview

We will now give an intuitive notion of the idea used to
preprocess the polygon for efficiently answering visibility
queries. A wvisibility region, R, in a simple polygon P, is
a mazimally connected subset of P with the property that
any two points in R see the same subset of vertices of P.
The visidbility set of a visibility region, R, is the subset of
vertices of the polygon P which can be seen from R. Two
visibility regions are neighboring visibility regions if they
share a common edge. A visibility region with minimal
visibility set is one whose neighboring visibility regions have
visibility sets which strictly contain its visibility set. Such
regions will be referred to as sinks and the analogy to the
standard definition of sinks in digraphs will soon become
clear.

The notion of visibility regions offers a solution to
the initial query problem. Since any two points inside a
visibility region sees the same set of vertices, we simply
need to decompose the polygon into visibility regions and
determine which vertices are visible from each of the
visibility regions. Once the polygon has been decomposed,
to answer a query, we need to determine in which visibility
region the query point lies.

In order to give a compact representation of the de-
composition of a polygon into visibility regions, we take
advantage of several key properties of the decomposition.
First, using a counting argument, we show that a simple
polygon P on n vertices has O(n®) visibility regions. This
immediately gives a rough upper bound on the solution to
the query problem.

We then consider the dual graph of the planar map of
visibility regions. We show that the visibility set of any two
neighboring visibility regions differs by only one vertex; we
direct the corresponding edge of the dual graph towards
the visibility region with the smaller visibility set and label
the edge by the lost vertex. We obtain a directed acyclic
gravh whose sinks correspond exactly to visibility regions
with minimal visibility set. From any node representing a
visibility region r, we can find a directed path r to a sink

s; the visibility set of r is the visibility set of s plus the set

of vertices labelling the edges of «.

Through the use of a technical counting argument, we
are able to establish that there are O(n?) sinks or regions
with a minimal visibility set. By associating with each such
region the subset of vertices it sees, we are able to store the
information necessary for answering the queries efficiently,
in O(n®) space. See Figure 1.

During the preprocessing phase, the polygon is decom-
posed into visibility regions. The regions are then prepro-
cessed for planar point location (Kirkpatrick [4], Lee and

2

Bose, Lubiw, and Munro

3

®sesse Polygon boundary

L
]
.
]
i
J
L
K
L
]
o
J
[
3
L
o
s

Smmm—— Windows K
J

o

Figure 1: Polygon decomposed into visibility regions with
directed dual graph.

Preparata [5], Preparata [7], and Sarnak and Tarjan [9]).
The directed dual planar graph of the planar subdivision is
built, where only the subset of vertices of P seen by each
sink is stored. At query time, a standard O(logn) pla-
nar point location query reveals which region contains the
query point. Once the region is located, we enumerate the
vertices by following a path from the node to a sink. The
time required for preprocessing is O(n®log n) since the cost
is dominated by the time required to preprocess for planar
point location. The space requirement is O(n3), which is
optimal with respect to the decomposition.

All extensions forged from this structure follow natu-
rally from the initial idea. We omit all proofs in this ex-
tended abstract. For full proofs of the theorems and more
details on the techniques used, the reader may refer to the
technical report[2].

3 Notation and Preliminaries

Most of the geometric and graph theoretic terminology used
is standard and for details, we refer the reader to O’Rourke
(6], Bondy and Murty [1], Preparata and Shamos [8]. For
simplicity of presentation, we assume that no three vertices

. .of the_polygon are collinear. .We .will begin by reviewing

some of the terminology used in this paper.

A simple polygon P is a simply connected subset of the
plane whose boundary is a closed chain of line segments.
As we are dealing only with simple polygons, we will refer
to them as polygons in the remainder of the paper. We will
denote a polygon, P, by a set of vertices v;,v2,...,Vn-1,Vn
such that each pair of consecutive vertices is joined by an
edge, including the pair {v,,v;}. We assume that the
points are in clockwise order, so that the interior of the
polygon lies to the right as the boundary of the polygon is
traversed. We will denote the open interior of the polygon

Efficient Visibility Queries in Simple Polygons

P by INT(P), the boundary by BND(P), and the open
exterior by EXT(P). The boundary is considered part of
the polygon; that is, P = INT(P) U BND(P).

We say a point p is in P when p € INT(P)UBND(P).
Two points in a polygon see each other if the line segment
between them does not intersect the exterior of the polygon.
There is a parallel notion of ezterior wvisibility. When
considering exterior visibility, we say a point p is in the
ezterior of P to mean p € EXT(P)U BND(P). Two
points in the ezterior of a polygon see each other if the line
segment between them does not intersect the open interior
of the polygon.

Let z be a point in polygon P. The visibility polygon
from z, denoted by V.P(z,P), is the set of points in P
visible from z; it is formally defined by

VP(z,P)={z|z€ Pand 72N P = 3.}

An edge of VP(z,P) which is not contained in an edge
of P is called a window of point z. Of the two vertices
of a window, the one closest to z is called a base and the
other is called an end. Note that the base of a window is
a vertex of the polygon P, but the end may not be. See
Figure 2. A window is denoted by Wind(base, end). A
pocket is called a left pocket if, in the neighborhood of its
window, the pocket lies to the left (counterclockwise) of
the ray from z containing the window, and the visibility
polygon to the right (clockwise). A similar definition holds
for right pockets. A vertex v of P is called a pocket verter
with respect to VP(z, P) if v is on a pocket. We extend
this notion to right pocket vertices and left pocket vertices
in the obvious way. A window bounding a left pocket
or right pocket is called a left window or a right window,
respectively. See Figure 2.

Non-pocket vertex

Polyon P

~@—Left Window(a,b)
wrt x

Pocket vertex

3 v
Left Pocket wrt x
Right Pocket wrt x

Figure 2: Windows and Pockets

25

4 Visibility Decomposition and its Properties

We begin by studying the properties of windows in poly-
gons. We first note that the base of any window is a reflex
vertex of the polygon, and that each reflex vertex can be
the base of at most one window with respect to a given
point z. :

We now describe how to obtain a decomposition of a
polygon into visibility regions. Given a polygon P, let W;
be the set of all windows in P with respect to vertex v;.
Let

n
W = BND(P)u | W;

i=1
Consider the planar subdivision induced by all of the line
segments in W. We can show that the set of non-external
faces in a subdivision induced by all of the line segments
in the set W is precisely the set of visibility regions. This
implies that two visibility regions sharing a common edge
have visibility sets differing by 1 vertex, and that a visibility
region in a simple polygon is a convex region.

A polygon can have O(n) reflex vertices; thus, the
set W contains O(n?) windows, but a planar subdivision
induced by n? arbitrary line segments in the plane can
have O(n*) faces. The following two lemmas reveal the
restrictions imposed by the notion of visibility in polygons.
These restrictions are crucial in showing that there are only
O(n®) faces in the planar subdivision of visibility regions
induced by n? line segments (the windows).

Lemma 4.1. Given a line segment ab inside polygon
P, if a point z in P sees a and b then z sees any point on
the line segment ab.

Lemma 4.2. Given an arbitrary line segment inside a
polygon P, and a point z inside P, at most two windows of
z intersect the line segment.

This leads to the following theorem:

Theorem 4.1. There are O(n3) visibility regions in a
polygon P on n vertices and there are polygons on n vertices
that have ©(n3) visibility regions.

The succinct representation of the information con-
tained in the planar subdivision of visibility regions relies
on a bound of O(n?) regions of minimal visibility or sinks.
We are able to achieve this by demonstrating more cru-
cial restrictions imposed on the regions by the notion of
visibility.

" “The following lemma summarizes the essential proper-
ties that allow us to show that there are only O(n?) sinks.

Lemma 4.3. Let R, be the set of right windows of
point z and Ry be the right windows of point y in polygon
P. Then, there is at most 1 intersection between the line
segments of R. and the line segments of R,.

The above lemma lies at the heart of the following
theorem:

Theorem 4.2. A decomposition of a polygon P on
n vertices into visibility regions contains O(n?) sinks and
there ezist polygons on n vertices which have ©(n2) sinks.

26

5 The Visibility Query Algorithm
In this section, we give a high level description of the

preprocessing step as described in the overview of Section
1.

. Construct the set W (as defined in section 4).
. Construct the planar subdivision induced by this set.
. Preprocess the subdivision for planar point location.

. Construct the dual planar graph of the subdivision.

(<L I - 7 B

. Construct the special dual directed planar graph from
the dual planar graph.

6. Associate, with each sink in the special dual directed
planar graph, the subset of vertices of P seen.

7. Associate, with each node, the number of vertices seen.
The time complexity is dominated by step 2,3. The to-
tal time complexity of the preprocessing step is O(n3 log n).
The space required is O(n3).
Given an arbitrary query point, the algorithm does as
follows:
1. locates the region containing the point;

2. starting at the node representing the given region,
follows any path leading to a sink.

If we wish to know only the number of vertices seen
then only step 1 is necessary as this information is stored
in each region. Thus, the time requirement is O(logn).
Now suppose that the length of the path to the sink is s
and that there are ¢ vertices in the list associated with the
sink. Each arc represents one vertex seen by the query
point and the list of vertices of the sink is seen by the
query point. Let k = s +t. The time required for a
query that enumerates the vertices seen is O(log n+k). The
correctness of this approach follows from the discussion in
the previous section. Hence, we have

Theorem 5.1. A simple polygon P can be prepro-
cessed in O(n3logn) time and O(nd) space such that
given an arbitrary gquery point inside the polygon, it takes
O(logn + k) time to list the k visible vertices and O(logn)
time to give the number of visible vertices.

6 Recovering the Visibility Polygon

Bose, Lubiw, and Munro

By following a path from the sink to the region
containing the query point, we can recover the ordering
by following these rules:

1. If a left window is crossed, insert the vertex, in the
label of the window, before the base.

2. If a right window is crossed, insert the vertex, in the
label of the window, after the base.

The order of the vertices is preserved in the sink, so
these insertions return the order of the vertices as seen by
the query point. Although the algorithm is simple, some
care must be taken in its implementation in order to remain
within the desired query time complexity.

To recover the visibility polygon of a given query point,
we must extend this notion of ordering to include certain
key edges. We define the visibility sequence of a point z
in a polygon P, written as VS(z, P), to be the clockwise
ordering of the edges and vertices of BND(VP(z,P)) N
BND(P). Note that an edge in this context refers to the
label of the edge in P and not the exact piece of it that is
seen from the point z. By generalizing the above algorithm
to account for the key edges encountered in the visibility
sequence, we have:

Theorem 6.1. A simple polygon P can be prepro-
cessed in O(n>logn) time and O(n®) space such that given
an arbitrary query point inside the polygon, O(logn + k)
time is used to recover the visibility sequence of size k.

Given the visibility sequence of a query point, we can
construct its visibility polygon in linear time in the size of
the sequence. Thus, the recovery of the visibility polygon
of a query point is within the desired time and space
complexity.

Theorem 6.2. A simple polygon P can be prepro-
cessed in O(n>logn) time and O(n®) space such that given
an arbitrary query point inside the polygon, O(logn + k)
time is required to recover the visibility polygon of size k.

7 Query points outside the polygon

In this section, we refine the solution to handle query points
in the exterior as well as the interior of the polyon. To
avoid the ambiguity between exterior and interior visibility,
a point on the boundary of the polygon will be considered
to be in the interior. If a given query point is inside the
polygon, we answer the query using the solution already

Until this point, we have only concentrated on the set.of . . _developed....We. now- turn -our-attention to query points

vertices seen by a query point. When answering a query, we
have ignored the order of the vertices as they appear in the
polygon. The cyclic order of the original polygon vertices
is the same as the clockwise ordering as seen from a query
point, thus, recovering the order of the vertices as seen from
the query point is an essential step towards recovering the
visibility polygon of the query point. To capture this notion
of ordering, we need to examine closely some properties of
a path in the dual graph from a region that is a sink to a
region that is not. These properties will allow us to recover
the order of the vertices seen by the query point.

2

which are strictly outside a polygon and satisfy the queries
with respect to exterior visibility.

We define the convez hull of a polygon P to be the
smallest convex polygon, say CH(P), containing P. A ver-
texon CH(P) is known as a convez hull vertez. If an edge of
CH(P) is not an edge of P, we say it is a bay edge. If 77
is a bay edge, then the corresponding bay is the polygon
formed of the vertices (vq, Vb, Ub—1, V=2, - , Va42, Va+1, Va)-
A vertex on a bay, but not on the convex hull, is known as
a bay vertez.

The general idea is to divide the exterior points into

Efficient Visibility Queries in Simple Polygons

two classes: exterior points inside bays and exterior points
outside the convex hull of the polygon. Since a bay is
a polygon, it can be preprocessed using the techniques
developed; this takes care of query points inside bays. The
following results show that the time and space complexities
necessary to preprocess the bays are O(n? log n) and O(n?),
respectively.

Observation 7.1. A bay vertez can be in only one
bay.

Observation 7.2. A convezr hull vertez can be in at
most two bays.

Lemma 7.1. The time required to preprocess all of the
bays is O(n®logn) and the space required is O(n®).

Therefore, by preprocessing each bay using the tech-
niques developed so far, we are still within the desired over-
all time and space complexity. Turning our attention to the
structure outside the convex hull, we obtain the following
results:

Lemma 7.2. A convez-hull vertez of a polygon P on
n vertices can have at most two of its windows intersecting
the outside of the convez hull.

Lemma 7.3. A bay vertez of a polygon P on n vertices
can have at most two of its windows intersecting the outside
of the convez hull.

Since a polygon vertex can only be a bay vertex or a
convex hull vertex, these two lemmas imply that there are
at most 2n windows outside the convex hull. This means
that the planar subdivision induced by these windows has
only O(n?) regions. We do not even need to worry about
sinks. By simply placing the necessary information in each
visibility region outside the convex hull, we remain within
the desired time complexity. Thus, we have:

Theorem 7.1. A simple polygon P can be prepro-
cessed in O(n*logn) time and O(n®) space such that given
an arbitrary query point inside or outside the polygon,
O(logn + k) time is required to list the k visible vertices
or recover the visibility polygon of size k and O(log n) time
to give the number of visible vertices.

8 Visibility of Fixed Points

In this section, we develop a technique to deal with visibility
queries concerning a fixed set of points. The techniques
used previously decompose the polygon with respect to
polygon vertex visibility. We will show how to generalize
this to decompose a polygon with respect to a set of fixed
points in the plane rather than the polygon vertices. We
will concentrate only on a fixed set of points contained
within the polygon, since the extension to fixed points both
inside and outside the polygon follows from the discussion
in section 7. Intuitively, we can think of the set of fixed
points as a set of point light sources. In the query, we are
simply asking for the light sources which are shining light
on the query point. For simplicity of presentation, we will
assume that no three points are collinear among the fixed
points and polygon vertices.

27

We must generalize the notion of a visibility region to
the following: Given a set S of fixed points contained in a
simple polygon P, a visibility region R, in Pis a mazimally
connected subset of P with the property that any two points
in R see the same subset of fixed points from S. All other
terms are defined similarly.

Let ||S|| = m. Let the points in S be labelled s; ... sp.
Analogous to the definition of the set W in section 4, we
define a set W'. Let W/ be the set of all windows in P with
respect to point s;. Let

n
W'=BND(P)u|J W,

i=1

Consider the planar subdivision induced by all of the line
segments in W’'. We are able to generalize the lemmas
presented in Section 4; thus we have:

Theorem 8.1. With respect to a set of fized points
ISl = m, a decomposition of a polygon P on n vertices
into visibility regions contains O(m2n) regions, and there
ezist some polygons which have ©(m?n) visibility regions.

Theorem 8.2. With respect to a set of fized points
ISl = m, a decomposition of a polygon P on n vertices
into visibility regions contains O(m(m + n)) sinks.

Theorem 8.3. Let ||S|| = m be a set fized points in
the plane and P be a simple polygon with n vertices. Given
an arbiirary query point inside or outside the polygon, we
can recover the number of visible fized points in O(log mn)
time and recover the visible set of k fized points in O(log n+
k) time, with O(m?(m + n)logn) preprocessing time and
O(m?(m + n)) space.

9 Line Segment Queries

Now, we revert to visibility queries concerning polygon
vertices for simplicity of presentation, but instead of query
points, we have line segment queries. When dealing with
line segments, there exist two notions of visibility. We

. might want to know the set of polygon vertices which see

the whole line segment, known as strong visibility, or we
might want to know the set of polygon vertices which see
any part of the line segment, known as weak visibility. We
consider the problem of weak visibility; strong visibility of
line segments seems to be a more difficult problem.

.. To recover the weak visibility set, we determine the set

of vertices visible to one end point. Let us call this set
WYVS. The line segment will intersect a set of regions in
the decomposition. We follow the path formed by regions
which are intersected by the line segment. If a window is
crossed and visibility is gained, then the vertex is added to
the WV'S. If a window is crossed and visibility is lost, then
nothing is done. When the region containing the other end
point is reached, the set WV S represents the set of vertices
weakly visible from the line segment. :

The only difficulty is finding the path formed by the
line segment. Since each visibility region is convex, the

28

problem reduces to the following: Given a point inside
a convex region and a direction, find which edge of the
region is intersected. This intersection is easily found by
performing a binary search on the ordered set of edges of
the convex region. Thus, we have

Theorem 9.1. A simple polygon P can be prepro-
cessed in O(n®logn) time and O(n®) space such that
given an arbitrary query line segment inside the polygon,
O(klogn) time is required to recover k weakly visible ver-
tices.

The extension to visibility of a fixed set of points follows
from discussion in Section 8. The extension to line segment
queries outside the polygon follows from the discussion in
Section 7. .

10 An Alternative Approach Using Persistence

We present a method using persistent data structures that
gives an alternative solution to all of the problems we
have been considering so far. The solutions are similar
except that the persistent data structure replaces the
special directed dual planar graph. This removes some of
the geometric intuition gained from the knowledge of sink
regions.

By Lemma 4.2, we know that each window in the
planar subdivision has at most O(n) intersections with
other windows, where n is the number of vertices in the
polygon P. Let us focus our attention on a single window,
say W, in this planar subdivision. Between the two
endpoints of a window are the intersection points with other
windows. Let p; ...p, be the consecutive ordering of these
points of interest with p; being one endpoint and p, the
other. Aside from the endpoints, all other points represent
an intersection between the window W and some other
window. A window forms a boundary between a region
seen by a vertex and a region not seen by a vertex. From
this, we deduce that each 77p;57 where 1 < i < r — 1 forms
the boundary of a different visibility region, each adjacent
to the next.

Let L be the set of vertices seen from p; on window W.
Since the point p, represents an intersection with another
window, the set of vertices seen from any point between
P2 and p3 is L with the addition or deletion of one vertex.
Thus, each intersection point identifies an update to the list
L. We will sketch the use of a persistent data structure.

If we consider updates to a data structure as stepsin

time, then a persistent data structure allows access to any
version of the data structure at any time. A structure is
partially persistent if one can only update the structure in
the present (queries are allowed in the past and present). A
structure is fully persistent if we can update the structure
both in the past and the present. In this situation, we need
only a partially persistent data structure to handle queries
and updates of insertions, deletions. In particular, Sarnak
and Tarjan [9] develop persistent search trees, which have
the property that O(n) updates to an empty persistent
search tree can be recorded in O(nlogn) time and O(n)

]

Bose, Lubiw, and Munro

space. Therefore, the information for each window can be
stored in O(nlogn) time and O(n) space. There are O(n?)
windows which implies O(n?) total storage and O(nlogn)
time.

In order to recover the vertices seen by the query
point, a planar point location query will identify the region
containing the point. Given the region, choose one of
the windows forming the region boundary. To recover
the visible vertices, we perform an inorder traversal of the
tree associated with that window for that time represented
by a point of the region on the window. The extension
to visibility sequence queries, visibility polygon queries,
fixed point queries, and visibility outside a polygon follows
naturally from the discussions developing the solutions
using the dual planar graph.

11 Conclusion

There are several questions which are generated from this
investigation:

1. Can a non-trivial lower bound be proved for this
problem?

2. Is there a smooth trade-off between query time and
preprocessing time? : :

3. Can we recover the strong visibility set of a line
segment query in a O(klogn) time using the same
amount of preprocessing as in the weak visibility case?

References

(1] J.A. BonDY AND U.S.R. MURTY. Graph Theory with
Applications. Elsevier Science, New York, New York, 1976.

[2] P. BosE. Visibility in Simple Polygons. University of
Waterloo technical report, 1991.

[3] L. GuiBas, R. MOTWANI, AND P. RAGHAVAN. The Robot
Localization Problem in Two Dimensions. Proceedings
of the 3rd Annual ACM-SIAM Symposium on Discrete
Algorithms, pp. 259-268, 1992.

[4] D. KiRKPATRICK. Optimal Search in Planar Subdivisions.
SIAM Journal of Computing, 12, 1, pp. 28-35, 1983.

[5] D.T. LEE AND F.P.PREPARATA. Location of a Point in a
Planar Subdivision and its Applications. SIAM Journal of
Computing, 6, 3, pp. 594-606, 1977.

[6] J. O'ROURKE. Art Gallery Theorems and Algorithms.
Oxdord University Press, New York, New York, 1987.

[7] F.P.PREPARATA. A New Approach to Planar Point Loca-
tion. SIAM Journal of Computing, 10, 3, pPp. 473-482,

[8] F. PREPARATA AND M. SHAMOS . Computational Geom-
etry, An Introduction . Springer-Verlag, New York, New
York, 1985.

(9] N.SARNAK AND R. TARIAN. Planar Point Location Using
Persistent Search Trees. Communications of the ACM, 29,
7, pp. 669-679, 1986.

