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Abstract. One of the major difficulties in stating and proving theorems
about the numerical stability of algorithms designed to effect operations, such
as translation, rotation and regularized Boolean operations, on subsets of E3, is
that the actual subsets defined by set-representations are ill-defined. To correct
this problem, we introduce the concept of quasi-rectilinear r-set, and describe,
using a simple example, how they can be used to state and prove results of the
kind described above.

1 Introduction

An r-set is a compact, regular, semi-analytic subset of Euclidean three-space E3
[1, 2, 3]. The class of r-sets is a common choice for a modelling space in solid
modelling. If an r-set S is actually equal to the underlying topological space |K|
of K, where K is a simplicial complex, then S will be called a rectilinear r-set
[2]. In this paper r-sets in E® will often be referred to as “objects” or “solids”.
There are several representational methods available for the representation of
r-sets, or rectilinear r-sets, including Constructive Solid Geometry (CSG) [2] and
Boundary Representations [4]. One of the difficulties with the latter approach,
and it is this problem that is considered in this paper, is the possibility of inconsis-
tency in the data provided, or inconsistency between the data and the underlying
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hypothesis about the class of objects represented. Such inconsistencies include,
but are not limited to, those arising from conversion and roundoff error [5) due
to the use of finite precision. In this paper we shall restrict our attention to the
case of rectilinear r-sets, where there is (depending on the approach taken) either

e possible inconsistency between the actual geometric vertices and the hy-
pothesis that faces are planar, or

* possible inconsistency between the actual geometric faces and the given
symbolic information.

Similar (but more severe) difficulties occur in the case of boundary representations
for r-sets with boundaries defined by points, curve segments, and trimmed surface
patches [6]. A satisfactory solution to this problem is crucial, in particular, for
the numerical robustness problem?!, which involves proving theorems about the
subset of E3 defined by the output of an algorithm using finite-precision floating-
point arithmetic. It is futile to try to prove such theorems until the sets involved
have been satisfactorily defined.

2 Boundary representations for rectilinear r-sets

A boundary representation for the rectilinear r-set § normally involves specifica-
tion of a cell-decomposition [9], embedded in E3, of the boundary 85 of S. This
specification usually involves vertices v/ € E3, face-plane equations n* - x = &,
and symbolic information I defining the (logical) relationships amongst the (log-
ical) vertices, edges, and faces of 8S. Typical examples are the “winged-edge”
and related representations [4, 10, 11, 12]. However, because these data are not
consistent amongst themselves, the actual subset S of E3 is not well-defined.
This is the inconsistency problem referred to in the Introduction.

One approach to the solution of this problem, in the case of rectilinear r-
sets, is to restrict faces to be triangular [13]. However, boundary representations
involving planar faces of general form are very widely used, and it is the sets
defined by such representations that are the subject of this paper. A second
approach is to view the geometric vertices v’ as approximate, and to suppose
that S is defined by the face-plane equations n* - x = &k, without reference to
the vertices [14]. However, although it may be tolerable that the vertices v/ will
not in general satisfy the face-plane equations, this approach suffers from other,
more serious, defects. First of all, there is no guarantee that the face equations
determine a rectilinear r-set, and secondly, even if they do, there is no guarantee
[15, p. 21] that it corresponds to the symbolic information X. Furthermore, if
these difficulties are eliminated by hypothesis, they reappear with crippling effect
when even simple operations are applied to the objects (15, 16].

'Good overviews of this problem are given in [7, 8].
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In contrast to these two approaches, we take the view that a rectilinear r-set is
only a model for a real physical object, and that the uncertainty in the surfaces of
the physical object will normally be large relative to binary conversion and other
errors. We suppose also that the symbolic information ¥ provided by the user is
exact, and that the definition of the r-set § C E3 must be rigorously consistent
with this data. (Since the symbolic information is part of the description of the
topological form of the object, it seems reasonable to assume that it has been
specified exactly. Furthermore, since it is logical information, it is reliable, in the
sense that it has not suffered conversion error on entry into the computer.) This
leads us to the idea of a quasi-rectilinear r-set, the face Fi of the boundary of
which is obtained by transfinite interpolation between the edges [v/, v7'] of logical
face k. Thus, the set S will be rigorously consistent with the symbolic information
X, and with the geometric vertex (v’) and edge ([v/, v/']) information?. The faces
of § will not be exactly planar, but they will be nearly so: if the deviations from
planarity, of the vertices in a single face, are small, then the set S will be close to
a rectilinear r-set (and, in particular, normally much closer than the uncertainty
in the surfaces of the real physical object being modelled).

The basic idea, of introducing perturbations of the given problem that are
outside the class of nominal problems (in our case, those defined by rectilinear
polyhedral sets), was apparently first suggested by Milenkovic [18, p. 19]. Note
that it will never be necessary to actually construct the transfinite interpolants: it
is only necessary to define them, in order to prove theorems about computational
methods.

3 Quasi-rectilinear r-sets

We use a theorem of Whitney [19], McShane [20] and Aronsson [21] to construct
the transfinite interpolant described above. The function ¥(y) defining the geo-
metric face F satisfies a Lipschitz condition with a constant that is proportional
to the deviation from planarity of those geometric vertices v’ corresponding to
face k. The domain F] of this function is defined by projecting the vertices v’
into the subspace orthogonal to the face normal n*. (In practice, we envisage
situations where the v’ are nearly copla.na.r, so that there exists t* such that
lv? — pr(v?) — t¥|| is small for each vertex v/ in the face. ) See Figure 1.

If the vertices v’ are perturbations of the vertices of a rectilinear r-set, then
the set S defined is close to the rectilinear r-set, as measured by the Hausdorff
distance between the two sets, the Hausdorff distance between the boundaries of
the two sets, and a pseudo-distance reflecting relative variation of the boundaries.

2This means that our interpretation is also a natural one in the sense that, even in the
higher-dimensional case, specification of the vertices v’ is all that is required to specify a set
(17).
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| Figure 1: Construction of the face Fi

Furthermore, it can be proved that each point in S can be described [22, p. 450]
in a neighbourhood of the point by a finite collection of analytic functions, and
it follows that S is semi-analytic, and theérefore an r-set.

4 Applications

Based on the concepts introduced above, it is possible to prove stability of cer-
tain algorithms implemented in ordinary finite precision arithmetic, provided the
underlying problem is not ill-conditioned. It is also possible to use similar con-
cepts to give a rigorous semantic interpretation of inconsistent data in the case
of objects with curved faces. These applications are presented in detail elsewhere
(in particular, see [23]). Here we only illustrate, using a simple example.
Consider the problem of translating the cube C = {x : |z;] < 0.1,i = 1,2, 3}
by t, where t; = 1,i = 1,2,3. The cube is represented by the vertices ui (G =
1,...,8)of the form (£0.1,+0.1, +0.1), normal vectors n* (k=1,...,6)of the form
(£1,0,0), (0,+1,0), (0,0,+1), and the symbolic information linking the logical
vertices, edges (twelve in number), and faces. Because of conversion error, the u’
are represented in the computer by v/, v/ # uf, where v} = fl(u}) = ui(1 + &),
and || < e 1077,j=1,..,8,i=1,2,3[24, Ch. 3] [25, p. 198]. The process of
transfinite interpolation described above defines a quasi-rectilinear r-set C’ such
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that d(C, C’) and d(9C, 0C") are on the order of ¢, where d denotes the Hausdorff
distance.

Let distance between two non-empty compact sets A and B in E3 be mea-
sured by the maximum of the Hausdorff distance between the sets, d(A4, B), and
the Hausdorff distance between the boundaries of the sets, d(8A,dB), with the
additional condition that the distance is infinite if there does not exist a home-
omorphism of E3 onto E3 that carries A onto B [26, 27, 28]. (That is, if two
objects are to be close, they must, in a very strict sense, have the same topo-
logical form). With this definition, the problem of computing set translation is
well conditioned. Furthermore, effecting the translation by calculating fI(v]+t])
defines a (computed) translated set T” such that the distance, as defined above,
from T' to T = C +t, is also on the order of . Consequently, the simple method
for translating a set is numerically stable. This result is intuitively obvious; how-
ever, it is not possible to state (much less prove) rigorously even straightforward
theorems such as this, until we have defined the actual subsets of E® being ma-
nipulated by the algorithms involved. This has been done by the introduction of
quasi-rectilinear r-sets.
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