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Abstract

We present an O(nlog? n) method that finds all squares inscribed in a convex
polygon with n vertices such that at least one corner lies on a vertex of the polygon.
We point out that this problem has a lower bound of Q(nlogn).
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1 Introduction

Approximating a polygon with a simpler shape is a problem that has received a con-
siderable amount of attention. Finding inscribed polygons has applications to pattern
recognition, as well as being of theoretical interest in computational geometry. In [2],
De Pano, Ke and O’Rourke have described an O(n?) algorithm for finding the largest
inscribed square in a convex polygon P with n vertices.

The interest in inscribed squares has also been highlighted by Klee in his recent
book [6].

Of particular interest are squares that are anchored: One corner of the square is
located at a vertex of the polygon. While it is relatively easy to find anchored squares in
quadratic time, it is nontrivial even to find all squares formed by the O(n?) diagonals of
P in subgquadratic time.

2 Inscribed Squares and Dual Curves

In the following, we denote the corners of a square by s,, s3, s3 and s, in counterclockwise
order. The vertices of P are counterclockwise vy,...,vs, while the edges are e,,...,¢,,
where e; has vertices v; and v;,,.
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Figure 1: Pattern Recognition: Is there a square among the diagonals of P?

Let a be any point on a convex polygon P. For any point p on P, placing s, at c and s,
at p positions s; at the point R,(p). Obviously, R.(p) is obtained by scaling the distance
of p from a by a factor of V2 and rotating the resulting point by % counterclockwise
around a. Consequently, the locus R,(P) of all possible positions of s; for s, at p and s,
on P is a scaled and rotated copy of P, called the right dual curve to P.

Similarly, the left dual curve L,(P) of P is the locus of all positions of s; with s, at a
and s, on P and obtained by scaling P by v/2 and a clockwise rotation of % around a.

Lemma 2.1 There is a one-to-one correspondence between squares inscribed in P an-
chored at a and points other than a where all three curves P, Ro(P) and Lo(P) intersect.

Proof.
Straightforward.
a

Before we describe how to use the dual curves for locating anchored squares, we note
the following:

Theorem 2.2 Let ¢ be a closed convez curve in the plane and a be some point on c.
There is at most one square inscribed in c that is anchored at a.

Proof. .

Assume there is an anchored square with corners s, = a, s3, 33 and s, - see Figure 2. It
is not hard to check that it is impossible to place another square with vertices t;, = a, t3, t3
and t,, such that the seven points a, s, 53, 34, 3, t3 and ¢, form a convex arrangement.(One
of the points s,, s, will lie inside the square (a, t,, 3, 4) or one of ;, t, will lie inside the
square (a’ 3324 33, 34)')

o

We distinguish two kinds of intersections between the dual curves: Simple intersec-
tions, where an intersection point can be separated from all other intersection points, and
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Figure 2: There is at most one inscribed square that is anchored at a

nonsimple intersections, which consist of a common segment of the polygons R,(P) and
La(P). Clearly, we get a nonsimple intersection only if there are two edges of P that
enclose an angle of § and have the same distance from a. This property enables us to
check all nonsimple intersections in time O(nlogn):
Algorithm NoNsSIMPLE
for each edge ¢; of P do
if there is an edge ¢; enclosing an angle of  with e;.
Determine the unique point p; on P that has the same positive
distance from e; and e;.
Check whether R,,(¢;) and £,,(e;) intersect on P.
return
End of NONSIMPLE.

Note that NONSIMPLE detects even those inscribed squares with corresponding non-
simple intersections that are not anchored at a vertex of the polygon P.

3 Simple Intersections

We will now discuss the problem of detecting inscribed squares with corresponding simple
intersection of the dual curves.

Assume a is an anchor point for which there exists an inscribed square with a simple
intersection point ¢; see Figure 3. (The shaded areas indicate areas that cannot contain
any part of Rq(P), or La(P) rsp., because of convexity.) We see that as a consequence of
convexity of P, R,(P) and L.(P), any other intersection point ¢ of the dual curves must
satisfy |£(',a,t)| > %. Furthermore, for any two other such intersection points ' and ¢”,
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Figure 3: The situation for a square with a simple intersection

we get |£(t',a,t")| < §. Finally, we see that the two dual curves cross each other at ¢.

This implies the following algorithm:
Algorithm SQUARE
use NONSIMPLE to detect all nonsimple intersections.
for each vertex v; of P do
if no nonsimple intersection ¢’ for anchor point v;,
use binary search to determine a simple intersection point ¢'.
if intersection point ¢’ does not yield square,
Use binary search on {t € Lo(P) | < |4(2, @, t')|} to
detect any simple intersection point ¢ corresponding to
an inscribed square.
return all squares Q;.
End of SQUARE.

For the binary searches, we use the following idea:

Consider a ray from a through a vertex of £,(P). In time O(logn), determine the
(unique) intersection point ¢ # a with Ra(P). If ¢ lies outside L,(P), an intersection
must lie clockwise from g, as seen from a. If g lies inside £,(P), an intersection must lie
counterclockwise from g, as seen from a. When we are left with an edge as our search

interval, we can calculate the intersection point.

Using this binary search on the vertices of Lo(P), we get an overall complexity of

O(nlog’ n).



Figure 4: An anchored square implies a; = b;

4 A Lower Bound

We point out that a method by R.L.DRYSDALE and J.W.JAROMCZYK (cf. (3]) implies a
lower bound of Q(nlogn):

Theorem 4.1 Determining whether there is square inscribed in a convez polygon that is
anchored at a vertez has a lower bound of Q(nlogn) in the algebraic computation tree
model.

Proof.

Reduce the set disjointness problem to the square problem: For two given sets {a; |
i=1,...,m} and {§; | j = 1,...,m} of positive integers, take a sufficiently large integer
M

Map a; onto the angles 734 and I34 +x, while b; gets mapped onto 33 + § and H+E
These values correspond to arcs on the unit circle, hence to a set of points. (The points
for the a; lie in the first and third quadrant, the ones for b; in the second and fourth
quadrant.)

Now it is not hard to see that every square inscribed in the unit circle has diagonals
intersecting at the center of the circle. Knowing all anchored squares inscribed in the
constructed polygon includes knowing whether there is one with a diagonal of length 2.
There is such a square if and only if there is some q; = ;. :

a

5 Conclusion

We have presented an O(nlog? n) algorithm for determining all anchored squares inscribed
in a convex polygon with n vertices. Since there is a lower bound of Q(nlogn), it would
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be particularly nice to improve our algorithm to O(nlogn). This might be possible with
a more sophisticated approach for locating simple intersections of the two dual curves.

Another interesting question is to give a subquadratic algorithm for finding maximal
inscribed squares that are not anchored, i.e. that have no corners on vertices. This would
improve the method of [2] for finding maximal inscribed squares to quadratic running
time. It remains an open question whether there can be a superlinear number of maximal
squares of this type.

Our method can be immediately generalized for finding inscribed rectangles with a
given ratio of sides. Other quadrangles make it necessary to give some more specifications
- we have omitted a detailed discussion at this point. It is not true for general convex quad-
rangles that there can only be one similar inscribed copy anchored at a vertex. (Theorem 2
cannot even be generalized to rhombi, i.e. quadrangles with four equal sides.)

We do conjecture, however, that the overall number of anchored quadrangles will still
be linear.
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