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Abstract

Let A and B be two sets of “well-behaved” (i.e., continuous and x-monotone) curve segments in
the plane, where no two segments in A (resp., B) intersect. In this paper we give a parallel
CREW-algorithm for reporting all points of intersection between segments in A and segments in
B, and for constructing the arrangement defined by the segments in A U B.

1. Introduction

Computing points of intersection and arrangements for lines or segments in the plane is a well
known problem in computational geometry and has attracted a lot of attention (cf., e.g., [CES88],
[G89], [G91], [MS88], [R92]). Here we consider a variant of this problem where the input consists
of a set A of “red” and a set B of “blue” non-intersecting “well-behaved” curve segments in the
plane and the machine model is the CREW-PRAM. These problems have applications, eg., in
computer graphics and computer aided design.

The work performed by our algorithms depends on the complexity of “elementary operations”,
e.g., how much time it takes a single processor to compute the number of points of intersection
between two fixed segments. This determines how efficiently the points of intersection can be
distributed among the processors. Here we assume that two segments intersect only a constant
number of times. Then all points of intersection can be reported using O(nlogn + k) work and
p < n+k/logn processors, and the arrangement can be constructed using O(nlogn + k) work and
p < n/logn+k/log? n processors, where n is the number of segments and k is the number of points
of intersection. This is optimal. In the full version of this paper (cf. [R92a]) we also consider the
case where “elementary operations” are more time consuming. In this case the performed work
increases to O(nlogn + m(k + p)) where m is the maximal number of intersections between two
segments. The running time of the best known sequential algorithm for this problem (cf. [MS88])
is O(nlogn + k).

Our algorithms do not need to know the number k of points of intersection in advance. Rather,
k is determined during the execution of the algorithms and additional processors are requested if
necessary. This is done only a constant number of times.

We are not aware of any other parallel algorithm for these problems. However, there exist several
algorithms for (simpler) variants of them. Goodrich showed how to construct the arrangement
defined by a set A of vertical and a set B of korizontal straight line segments in time O(logn) using
n+k/logn processors on a CREW-PRAM (cf. [G89]). Riib showed (cf. [R90], [R92]) how to solve
the red-blue intersection reporting problem for straight line segments with arbitrary slopes within
the same time and processor bounds. (This does not include the construction of the arrangement.)
The same result was claimed by Goodrich et al (cf. [GSG90]), although their proof seems to be
incomplete. - The problems of reporting ‘all points of intersection between n arbitrary stratght line
segments and constructing the arrangement defined by them in parallel, were considered in [G89],

~[R92], and [CCT91], and the problem of constructing the arrangement defined by n straight lines

in parallel was considered in [ABB90], [G91], and [HIW90).

The basic ideas of our algorithms are as follows. We use the plane-sweep tree, i.e., an extension
of the segment tree, that is well suited for intersection problems in parallel. The plane-sweep tree
divides each segment into O(logn) fragments. For each such fragment we first compute which other
fragments are intersected by it and then distribute the thus found points of intersection equally
among the processors to actually report them. To construct the arrangement we could now simply
sort, for each segment, all points of intersection that lie on it according to their x-coordinates.
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This would lead to a performed work of Q(nlogn + klogn). We show how to compute the sorted
list of intersections on each segment spending less work by using the fact that these sortings are
not independent.

This paper is organized as follows: Section 2 contains some basic definitions, and Section 3 contains
the algorithms.

2. Basic Definitions

The segments that we consider in this paper are “well-behaved”, i.e., continuous and x-monotone,
curve segments. In the remainder of this paper we assume, for ease of explanation, that no two
segments overlap. We assume that the following functions can be evaluated in constant time by a
single processor: Y (p,z), where Y (p,z) is the y-value of segment p at x-coordinate z, sntersect(p, q)
that is true iff segments p and ¢ intersect, and IntPoint(p,g) that returns an arbitrary point of
intersection between segments p and g.

Definition plane-sweep tree

Let S = {l;,...,ln} be o set of curve segments and let U = {z; < z3 < ... < z,} CR, called the
universe, contain the z-coordinates of all endpoints of segments in S.

A plane-sweep tree PST for S with universe U consists of a balanced binary tree with 2r 4+ 1
leaves. Each node v has associated with it a vertical strip II,: the leaves from left to right are
associated with the strips (—o0,z1) X (—00,+00),[21,21] X (—00,4+00), ..., (2, +00) X (—00, +00), and
every internal node is associated with the union of the strips of its children. In addition, every
node v has associated with it a sequence H(v) and a set W(v) of segments from S, defined as
follows: W(v) = {l € S|l has an endpoint in II, and does not span IL,}, H(v) = {l € S|l spans II,
but not M areny(v)}- The segments in H(v) are sorted according to their y-coordinates at the left
boundary of II,.

Notation: Let N(v) be some set of segments assigned to a node v of a plane-sweep tree. Then
N(v) = {InT,|l € N(v)}. We call the elements of N(v) fragments of the segments in N(v).

It is easy to see that a plane-sweep tree for a set S of size n and a universe of size » has a size
of O(nlogr). The following lemma demonstrates how we can use this tree to compute segment
intersections.

Lemma 1 -

Let S be a set of segments in the plane and let U contain the x-coordinates of their endpoints.
Let PST be a plane-sweep tree for S with universe U. Suppose that a segment ! € S intersects a
segment g € S at a point d.

Then there exists exactly one node v in PST where d € II, and either (i) ! € H(v) and ¢ € H(v),
or (ii) I € H(v) and g € W(v), or (iii) I € W(v) and ¢ € H(v).

3. The Algorithms

Our algorithms are based on lemma 1. This means that we proceed in two or three steps as
follows. In step 1 we build up a plane-sweep tree PST for AU B whose universe consists of the
x-coordinates of all endpoints of segments in AU B. While doing this we only compute the subsets
of the H- and W- sets in PST that consist of segments in A (B, resp.,). We call these sets H4
and W4 (HB and W5, resp.,). This can be done in time O(logn) by n processors (cf. [R92]).
In step 2 we compute all points of intersection (cf. Section 3.1), and in step 3 we construct the
arrangement (cf. Section 3.2), using the information gathered in step 2.

3.1 Computing the Points of Intersection

We compute all points of intersection by first determining, for all nodes v and each fragment I
at v, which segments in H4(v) (HB(v), resp.,) it intersects, and then distributing the points of
intersection equally among the processors to actually report them.

Computing the intersected segments

We show here how to compute the intersected segments for all fragments of segments in B in
time O(logn) using n processors. For each node v in PST and each fragment I € HB(v)UWB(v),



let low(l) (high(l), resp.,) be the rank of the highest (lowest, resp.,) fragment in H4(v) that lies
entirely below (above, resp.,) I. For all H-fragments these ranks can be computed in time O(logn)
by n processors with the help of merging. For the ﬁ”-ﬁ'agments they can be computed with the
help of fractional cascading. We show here how to compute low(l) for all fragments ! € W(v) and
all nodes v in 3 steps as follows.

Step 1: First we turn PST together with the H“4-sequences into a fractional cascading data
structure. This can be done in time O(logn) by n processors (cf. [ACG89]). Now each node v
in PST has assigned a sequence M(v) such that given the position of an element z in M(v), a
single processor con compute the position of z in H4(v) and in M (parcnt(v))~in constant time.
Step 2: In this step we compute, for all nodes v and all fragments ! € H3(v), the nearest
neighbour from below of ! in M(v) with the help of merging. We can store this information for
each segment in an array of length 2depth(PST).

Step 3: Now we assign one processor to each segment ! € B that computes low(l,) for all fragments
I, of I where I, € W& (v) for a node v. It does this by simultaneously following the two paths of
nodes such that ! is contained in their W-sets upwards. When moving from a node v to its parent
w, we distinguish two cases. In case 1 I, = l,. Then the processor assigned to ! can compute
the nearest neighbour from below of l,(=1I,) in M(w) and low(l,) in time O(1).

In case 2 I, #l,. Let u be the sibling of v. Then INII, # @ and thus, since ! does not span II,,,
either € W3(u) or I € HEB(u). In the first case the processor assigned to [ has already computed
the neighbour from below of I, in M(u), and in the second case this neighbour was computed in
step 2. Thus the processor assigned to I can compute the neighbours from below of I, and of l,
in M(w) in time O(1). Since I, = I, Ul,, the nearest neighbour from below of I, in M (w) is the
lower of these two.

Since height(PST) = O(logn), step 3 can be executed in time O(logn) by n processors.

Computing all points of intersection
All points of intersection can now be computed using p < n+ klogn processors and O(nlogn + k)
work.

3.2 Constructing the Arrangement

We show here how to construct the arrangement after all points of intersection have already been
computed. What we need to compute are pointers from each point of intersection s to its at most
4 neighbours on the segments defining s.

For each segment I let L(I) be the sorted list of all points of intersection on I. According to the
three clauses in lemma 1, there exist three cases for a segment ! and a point of intersection s on
l. Following clause (iii), we define, for each segment I, a sublist L%WH(l) of L(l) that contains all
points of intersection s between ! and a segment ¢ where s € II,, I € W(v), and g€ H (v) for a
node v. In Section 3.2.1 we show how to compute L%¥(I) for all segments ! using O(nlogn + k)
work and p < n+k/logn processors. These lists will then guide the computation of all neighbours
using O(nlogn + k) work and p < n/logn + k/log? n processors, as shown in Section 3.2.2.

3.2.1 Computing LWH(])

In this section we show how to compute LWH(l) for all segments I € A. We do this by first
- computing, for all segments ! € A and for each point of intersection in LW¥(l), its neighbours in
LWH(l) and then using list ranking to obtain all LWH-lists. The latter step can be executed in
time O(logn) by n + k/logn processors (cf. [AM91]), so let us concentrate on the first one. To
compute the neighbours we proceed in two steps as follows.

Step 1: This is a preprocessing step. In it we compute, for each segment ¢ € B and each node
v where ¢ € HB(v) UWE(v), the nearest neighbours of g above v, i.e., the at most two fragments
that are contained in HZ(v) or in the HB-set of an ancestor of v and are nearest (from above
or from below) to ¢ among these. This can be done in time O(logn) with n processors.

Step 2: In this step we compute all LWH_Jists. Let I € A, let 5; and s, be neighbours in LWH(1),
let s; lie on h € HB(v), and let s, lie on ¢ € HB(w). Wlog., let depth(v) > depth(w). We
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distinguish 3 cases. In case 1 w = v or w is an ancestor of v and s; € II,, in case 2 w is an
ancestor of v but s, ¢ I, (cf. Fig. 1a), and in case 3 w is not an ancestor of v (cf. Fig. 1b).
We deal with the 3 cases in reversed order.
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< 11,
a) s; and s, comply to case 1, b) s; and s; comply to case 3
3; and 3, comply to case 2
Fig. 1

Case 3: This case can occur at most once for each segment ! € A, and all neighbours complying
with it can be computed in time O(logn) by altogether n + k/logn processors.

Case 2: Wlo.g. we assume that s; lies to the right of s;. Then s, is the rightmost point of
intersection between ! and fragments in H B(v), and only I’s left endpoint is contained in II,. We
assign one processor to each sement that computes all such pairs of intersection by walking upwards
in PST. Altogether this can be done using O(nlogn + k) work and p < n + k/logn processors.
Case 1: We will use the fact that under the above conditions, ¢ is a nearest neighbour of h
above v. We compute the neighbours in 2 steps. In step 1 we compute, for all /] € A and all
s € LWH(1), “candidates” cand(s,!) and cand.(s,l) for s's left (right, resp.,) neighbour in LWH(1),
and in step 2 we actually compute the neighbours.

Step 1: For each segment I € A, we assign one processor to each point of intersection in L%WH(1).
Let s € LWH(l) lie on h € 7 B(v). The processor assigned to s examines h’s nearest neighbours
h; and h, above v and assigns the points of intersection between ! and h, h;, and h; that are
nearest to s to cand(s,l) (cand.(s,l), resp.,). After this we assign one processor to each pair of
points of intersection complying with case 2 or case 3 that replaces their candidates appropriately.
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cand,.(s;,l) = s3 at the beginning. When the neighbour of s, from the left
has been computed, cand.(s,,l) is replaced by s,.

Fig. 2

Step 2: In this step we compute all neighbours. We do this in depth(PST)— 1 steps, one for each
level of PST except the root, moving from the leaves upwards. For each i, 1 < ¢ < depth(PST), let
k; be the sum of the lengths of all lists LWH(l,q) of intersections between I € A and ¢ € HB(v)
for a node v at depth i.

Step 2.i, 1 < i < depth(PST) —1: Let depth(i) = depth(PST)+ 1 —i. We assign one processor to
each point of intersection s € LWH(l,q) where I € A and g € HB(v) for a node v at depth depth(i).
The processor assigned to s examines cand;(s,l) and tests whether s lies between cand;(s,l) and
cand,(cand;(s,l)). If so, it sets cand.(cand(s,l)) to s (cf. Fig. 2). A similar rule is applied to
cand,(s,l) and cand;(cand,(s,l)).

Thus step 2 can be executed in time O(3 %PtMPST) [k;logn/k]) = O(logn) by n+k/logn processors.

i=1
The correctness of the two steps can be proved by induction on i.



3.2.2 Computing all neighbours

In this section we show how to compute the neighbours of all vertices in the arrangement of AU B
using O(nlogn + k) work and p < n/logn+ k/log® n processors. W.l.o.g., we restrict our attention
to the segments in A. We will use the following observation: Let € H4(v) and h € W2(v) for
a node v in PST, and let s be a point of intersection between ! and h where s € II,. Then there
exists exactly one descendant w of v where h € HB(w) and s € II,,.

This leads to the following three main steps. For each node v in PST let Copy(v) be the list of all
segments / € A where | € H4(w) for an ancestor w of v, including v, and [ intersects a fragment
in # B(v), sorted according to their y-coordinates. In step 1 we compute the list Copy(v) for
each node v in PST. Additionally we compute, for each node v, each segment ! € Copy(v) and
each fragment ¢ € HB (v) that is intersected by [ all points of intersection between I and q. With
the help of the L%H-lists this can be done in time O(logn) using n + k/logn processors.

What do we achieve by this step? Consider a segment ! € A and a point of intersection s in
L(l). Then there exists exactly one node v in PST where | € W2(v) U Copy(v), and s lies on a
fragment in H B(v), i.e., we have divided the fragments in B that contribute to L(l) into subsets
where the elements in a subset are totally ordered. We have done so by increasing the number
of segments stored in PST to O(nlogn + k). Next we want to apply the same technique as in
Section 3.2.1 to compute all neighbours. IL.e., we want to identify, for all segments I € A, all pairs
(s1,82) of neighbours in L(I) where s, lies on h € HB(v), s, lies on g€ HB(w) and s, ¢ I, or
sy ¢ II,. (Otherwise h is a neighbour of ¢ above w or g is a meighbour of h above v.) This will
be done in step 2. In Step 3 we then employ the same technique as for the computation of the
LWH_Jists to compute all neighbouring points of intersection.

Step 2: Let [ € A, let s, and s, be neighbours in L(l), let s, lie on h € HB(v) and s; on
q € HB(w), and let s, € II, and s; € II,. Only the cases that s; ¢ II, or s; ¢ II, need our
attention. We distinguish 2 cases. In case 1 | € W4(v) and | € WA(w), ie., s; and s; are
neighbours in LYWH(l), and in case 2 I ¢ Copy(v) or | € Copy(w). To compute the neighbours
that comply with case 2 we use the fact that in this case s; is extremal among the points of
intersection of ! with fragments in HB(v), or s, among those with fragments in H B(w).

Thus we define, for each node v, two sorted (according to y-coordintes) lists Search,(v) and
Searchi(v) of HA-segments that “search” for neighbours for a point of intersection on them lying
in I,. Search,(v) (Searchi(v), resp.,) contains an entry for each segment ! € A where | € H4(u)
for an ancestor u of v and ! € Copy(w) for a descendant w of v, both times including v. This
entry represents the rightmost (leftmost, resp.,) point of intersection between ! and a fragment
in WB(v) uf B(v), and is associated with the segment in W25(v) U HB(v) that contains this
intersection.

Now let us investigate how the Search-lists can help us to find all required neighbours. Remember
that /€ A and s; and s; are neighbours in L(l) where s; lies on h € HE(v) and s; € II,, and s,
lies on ¢ € HB(w) and s; € II,. W.lo.g. we assume that I € Copy(v) and that s, lies to the right
of II,. Then s, is the rightmost point of intersection between I and fragments in H B(v)UWB (v)
and thus ! € Search,(v) and I's entry in Search,(v) represents s,. Let u be the ancestor of v
where | € H4(v). We distinguish two cases.

Case 2.1: s; is the rightmost point of intersection on ! in II,. ‘Then I € Search.(u) and I’s entry
in this list represents s, and ! ¢ Search,(parent(u)).

Case 2.2: s; is not the rightmost point of intersection on [ in II,. We distinguish 2 cases.
Case 2.2.1: I's entry in Search,(u) still represents s,. Since s; is not the rightmost point of
intersection on [ in II,, w is an ancestor of u. Thus ¢ spans II, and g is a nearest neighbour of
h above wu.

Case 2.2.2: Is entry in Search,(u) does not represent s,. Let z be the highest ancestor of v where
s entry in Search,(z) represents s;. Then I € Search;(sibling(z)), or I € Copy(parent(z)). W.lo.g.
we assume that both is true, and let s3 be the point of intersection represented by I's entry in
Searchy(sibling(z)), and s, the point of intersection between I and the fragments in H2 (parent(z))
that is nearest to s; from the right. Then s; = s3, or s, = 34, or g is a mnearest neighbour of h
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above parent(z) (cf. Fig. 3).
Thus given the Search-lists we can compute all neighbours that comply with case 2 using additional
work O(nlogn + k). This leaves the computation of the Search-lists.

q ——

lmsz \ \33
N \34\\
II. >
Hparent(z)
Fig. 3

Note that all Search-lists together may contain up to O(klogn) elements. Thus we store only
compressed versions of the Search-lists, defined as follows. Let v be a node in PST and let
Search,(v) (Searchi(v), resp.,) be divided into maximal sublists where the elements in a sublist
are associated with the same segment in W2(v) U HB(v). We store in the compressed version of
Search,(v) (Searchi(v), resp.,), called CSearch,(v) (CSearch;(v), resp.,), only the lowest and highest
element in each sublist. It can be shown that the size of all CSearch-lists in PST is bounded by
O(nlogn).

To compute the missing information, we proceed as follows. First we compute the lists CSearch,(v)
and CSearch)(v) for each node v in PST walking upwards in the tree. While doing this we also
gather the information needed for cases 2.1 and 2.2.1. Afterwards we then compute the information
needed for case 2.2, what amounts to expanding parts of the CSearch-lists. All this can be done
in O(nlogn + k) work using p < n/logn + k/log n processors. We omit the details.
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