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Abstract

This paper presents a novel approach to Parallel Computational Geometry by using networks
of analog components (referred to as analog networks or analog circuits). Massively parallel
analog circuits with large numbers of processing elements exist in hardware and have proven
to be efficient architectures for important problems (e.g. constructing an associative memory).
In this paper it is demonstrated how Parallel Computational Geometry problems can be solved
by exploiting the features of such analog parallel architectures. Using massively parallel
analog circuits requires a radically different approach to geometric problem solving because
(1) time is continuous instead of the standard discretized stepwise parallel processing, and (2)
geometric data is represented by analog components (e.g. voltages at certain positions of the
circuit) instead of the usual digital representation.

The paper presents analog parallel algorithms for the following geometrical problems:
minimum weight triangulation of planar point sets or of polygons with holes, minimum
rectangular partitions of rectilinear polygons with holes, and determining for a given line
segment set a subset of non-intersecting line segments of maximum total length. The proofs
given in this paper provide ranges for the circuit parameters for which the circuits are
guaranteed to produce a feasible solution. Such analysis has previously been unavailable for
Hopfield-net circuits. The paper also includes experimental results which demonstrate that, in
practice, our analog parallel circuits produce high quality outputs.

1 Introduction

Parallel (as well as sequential) computational geometry has thus far focussed on processing digital data in
discrete time steps. Analog Parallel Compuztational Geometry, as introduced in this paper, manipulates
analog geometric data in continuous time. The two approaches are radically different and require both
different architectures and different problem solving techniques.

The manipulation of analog geometric data in continuous time is how the brain is believed to solve
geometric problems. May be it is in this distinction that we will find the explanation to why many
geometric problems require considerable algorithmic effort but are solved by humans with surprising
speed and ease. Consider, for example, the problems of determining whether two planar point sets are
linearly separable, or determining a collision-free motion of an object in the presence of obstacles.

The introduction of analog computational geometry arises out of the necessity to bridge the software-
hardware gap for processing analog geometric data. Hardware is readily available (see below) while little,
if any, work has been done on the design of computational geometry algorithms for such architectures.
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We found analog parallel computational geometry to be particularly attractive when solving problems
with a sequential high time complexity.

As architecture we consider a class of analog circuits known as Analog Hopfield Nets (2, 5]. These
analog parallel architectures are called artificial analog neural nets because they exploit the massively
parallel analog local processing and distributed representation properties that are believed to exist in the
brain. The analog network (also referred to as analog circuit) consists of a large number of extremely
simple analog processing elements which are essentially analog amplifiers. These amplifiers (also
referred to as neurons) are connected via feedback circuits consisting of wires, resistors, and capacitors.
A schematic diagram of such an analog circuit is shown in Figure 1 (see Section 2 for more details).
Analog Hopfield Nets are not just theoretical models of biological neurons but are also attractive
architectures from a practical perspective. They have hardware realizations in VLSI (CCD and NMOS)
and fiber optics technologies [13, 15-18]. The architectural simplicity of analog circuits allows to build
circuits with very large numbers of neurons. Applications of great practical value include, for example,
analog associative memory cells ([17] pp.58-72). The dynamics of an analog circuit, without the
constraints of enforced discrete time steps, can provide for virtually instantaneous outputs even to some
hard computational problem; see e.g. [5-7, 17). The main challenge is to exploit the dynamic behavior of
the feedback loops connecting the amplifiers in such a way that the system actually solves the given
problem.

The contribution of this paper is to introduce Parallel Analog Computing to the field of Parallel
Computational Geometry by demonstrating how geometric problems can be solved by exploiting the
features of existing analog architectures. The techniques developed are completely different from those
developed for solving computational geometry problems in standard digital parallel models of
computation. In particular, we present analog circuit designs for the following geometrical problems:
minimum weight triangulation of planar point sets or of polygons with holes, minimum rectangular
partitions of rectilinear polygons with holes, and determining for a given line segment set a subset of
non-intersecting line segments of maximum total length. In the standard digital model most of these
problems either have high polynomial time solutions or are conjectured/known to be NP-hard/complete.

The analog circuits described in the previous literature are pure heuristics evaluated through
experiments only. Circuit parameters are determined by experiment, making statements about the
correctness of these solutions impossible. For example, Hopfield's solution for the traveling salesman
problem [5-7) neither guarantees that the reported tour is optimal nor that it is even valid (and sometimes
the circuit does actually report invalid "tours"). In contrast to the previous literature we give, in our circuit
analysis, rigorous proofs of the feasibility of the solution. For example, we show that our minimum
weight triangulation circuit always produces a valid triangulation and that the energy of the circuit, which
is known to be minimized when the circuit reaches a global minimum in a stable state, is proportional to
the total length of the selected edges (plus a fixed constant). We have not found any such circuit analysis
in the existing literature describing analog circuits for other problem areas.

Efficient solutions to computationally hard problems are by nature heuristics. The main advantage of
analog circuits, in contrast to standard digital heuristic methods, is that analog circuits produce (in
general) virtually instantaneous results. The disadvantage for the designer is that the solution must be
expressed within the particular framework of the system of differential equations describing the dynamic



behavior of such a circuit. This poses an additional challenge compared to using standard heuristics or
optimization techniques.

The remainder of this paper is organized as follows. Next, in Section 2, we give a brief review of
Analog Hopfield Nets. In Section 3 we present for the minimum weight triangulation problem a detailed
description of the circuit design, analytically derive sufficient conditions on the circuit's parameters to
always produce a feasible solution, and prove the correctness of the circuit. The design and analysis of
analog circuits for the other geometric problems listed above is discussed in Section 4. We have
simulated and tested our circuits on a SPARC workstation and on a Transputer Network. The
experimental results, also included in this paper, show that our circuits produce high-quality outputs.
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Figure 1. An Analog Neural Circuit With N Neurons.

2 Analog Hopfield Nets

The following discussion of the Analog -Hopfield Net {2, 5 refers to the net's circuit diagram given in
Figure 1. The subcircuits separated by adjacent dashed lines are called neurons (the circuit was originally
designed as a simplified electronic model for biological neurons). Each neuron i has an output s;, an
inverted output -sj, and an input line. For each pair (i,j) of neurons, either s; or -5j is connected to the
input line of neuron i via a resistor of resistance R;;. Define Tjj to be 1/R;j if s; is connected to the input
line of neuron i and to be -(1/R;j) otherwise. All inputs to a neuron i, weighted by the respective inverse
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resistances Tjj, as well as an external input e;, are added on its input line and create an amplitude referred
to as ;. The neuron's output s; is the output of an analog amplifier with input &;. The input/output
behavior of the amplifier is described by s; = g(u;), where g(;) is a strictly monotone increasing sigmoid
function as shown in Figure 1. For neuron i, the values e;, 4; and s; are referred to as its bias, internal
state and state, respectively; Tj; is called the weight of the connection between neuron j and neuron i.

An analog neural circuit is "programmed" by encoding the problem input into a set of resistance,
capacitance, and voltage values for the resistors, capacitors and external input lines, as well as defining
the initial internal state of the circuit (in terms of voltage levels at specific internal positions). Starting at
this initial state, the internal feed-back loops cause a dynamic change of the system which can be
described by a system of differential equations. Under certain circumstances, the dynamics are such that a
final stable state will be reached, which is called the equilibrium. The dynamic behavior of the Hopfield
Net is described by the following system of differential equations:

n .
Cidi=XTysj-gi+ei  ,i=l, ., N. (1)
=1 i

The main challenge is to encode the problem in such a way that the circuit's behavior is predictable and
that it actually solves the given problem, i.e. it converges to an equilibrium state which encodes a solution
to the problem. The advantage of this approach is that, even with many neurons, the time for an analog
circuit to settle into a stable state is typically extremely small.

In order to faci.litate the analysis of the dynamic behavior of the circuit, the differential equations (1)
are normalizedtoy =-y + T § + ¢ (2) where u = (¥y, ..., 4p)t, § = (51, ..., Sp)t, 0<s;<1, € = (eq, ...,
en), T is the n x n matrix of T;j values, and s; = g(u;) for g(u;) =% (tanh (4;/B))+1),0<B<1(3);
see Figure 1. For the remainder of this paper let A 2 19 be a "large " value for which tanh(4) = 1 and,
hence, g(A B) = 1. For a symmetric T matrix, T;j = Tj;, with 0 diagonal elements, T;; = 0, it has been
shown [5-7] that

Si
1
Em=-§srs-zs+§Jg-l(s)ds @

is a Lyapunov function [1] for (2). That is, E(s) < 0 for all § (5) and the Hopfield Net migrates to a stable
state § with § = 0 (6). The function E(§) is equivalent to the circuit's energy when it is in state §.The state
space of all possible states § = (s, ..., S»)t over which the circuit operates is the interior of the n-
dimensional (real-valued) hypercube [0,1])*. The case when the amplifier gain curve g(i;) is narrow,
more precisely when B converges to 0, is called the high gain limit. It has been shown in [5, 6, 19] that, in
the high gain limit, for non-degenerate T matrices, every stable state § has the property that E(g) is a local
minimum (7) and s converges to a corner of the n-dimensional hypercube (8). That is, every s; converges
to either 1 or 0. In the first case, neuron i is called selected, otherwise it is called unselected.

3 Minimum Weight Triangulation

Let S = {p1, ..., pn } be a planar set of n distinct points p; in general position. Consider a weight
function assigning a positive weight to every possible edge connecting two points of S (in many cases,
the weight of an edge is defined as its length). A minimum weight triangulation of S is a maximal set of
non-intersecting straight-line segments (edges), whose endpoints are in S, such that the total weight of all



selected edges is minimized; see e.g. [14]. It is an open problem whether the minimum weight
triangulation problem for point sets in the plane is NP-complete (3, 4, 12]. The minimum weight
triangulation problem has several applications. Recently it was also shown that the minimum weight
triangulation problem for a class of extremely flat convex polygons is dual to the problem of constructing
optimal binary search trees with zero key access probabilities [9]. Thus this work may also have
applications to data structuring.

In Section 3.1 we describe the construction of an analog circuit for solving the minimum weight

triangulation problem. Our system always converges to an equilibrium state. We prove that every stable

state of the circuit corresponds to a triangulation of the given point set. Furthermore, we show that
minimizing the weight of the triangulation is equivalent to minimizing the energy of the circuit.
In Section 3.2 we present results of an experimental study illustrating the performance of the circuit.

3.1 Analog Circuit Design and Analysis

Our analog circuit, called TN(S), for the minimum weight triangulation problem is an analog neural
circuit with N =M'2Ll)- neurons, referred to as neurons 1, 2, ..., N. Each edge connecting two points of
S is assigned to a unique neuron; the edge assigned to neuron i will be referred to as edge;.

In an equilibrium state reached by the circuit, an edge edge; is called selected if and only if the
corresponding neuron i is selected. The set of selected edges is the ouspus produced by the circuit. It will
be shown that the output of the circuit is always a (valid) triangulation of the point set. We will also prove
that minimizing the energy of our circuit is equivalent to minimizing the weight of the triangulation.

In a preprocessing phase we compute the weights, J;, of all edges edge;, and the maximum weight,
Ijmax. Furthermore, we determine for each pair of edges whether or not they intersect properly (i.c. they
intersect at a point which is not a vertex). We now define the circuit by setting T, ¢, and an initial state §.

Circuit TNCS) for Mini Weight Triangulation of a Point Set S:
Select constants > 0, 750, r>0, B>0, C1>0, and C2>0 with the following six properties:

B2(C1+AB)/(1-9) (9 C2>>1 12)
Ci1>C2+2AB (10) B<<1(B—0) (13)
r<<0.5 (11) y<< 12 (14)
We define the T-matrix as follows: Tjj = -B X;j (1-8) _ (15)

where §; is the Kronecker symbol and

1 if the edes edge; and edge;j intersect properly
Xij= : (16)
0 otherwise.
For each neuron i we set the bias ¢; to: : ei=C1-C2 Th: . (17)
.- max
The initial state of the system is set to: si=0.5 + random (18)
where random is a random number with the property : -r<random<r. (19)

Practical choices of B, ¥, r, B, C1, and C are discussed in Section 3.3. We now study the dynamic
behavior of the circuit TN(S). First, we state the following observation:
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Observation 1.
(1) T is a symmetric matrix, i.e. Tjj=Tj;forall 1 <ij<N.
(2)T;;=0forall1 <i<N.

Thus, TN(S) will reach an equilibrium state; see (4) to (6). Since (13) ensures that we operate the
circuit in the high gain limit, every equilibrium state has the property that every s; converges to either 0 or
1, and E(g) is a local minimum; see (7) and (8). The remainder of this section discusses the dynamic
behavior of TN(S) with respect to our goal of computing a minimum weight triangulation of S.

Let s be an equilibrium state, u; = g-1(s;) for all i, then from (2) and (6) follows

Vi ui=jZT,ij+ei . (20)

Lemma 2 Let edge; and edgey, be two edges that are selected in an equilibrium state § (for the high gain
limit). Then edge; and edgey do not intersect properly.

Proof: Assume, by contradiction, that there is a stable state § where two selected edges edge; and edge;
are intersecting properly, i.e. Xj = 1. Since neurons i and j are selected, s; and sy converge to 1; hence,
si 2 1- yand s 2 1- ¥. From (20), together with (9) and (17), we obtain

Ui = 2 Tv SJ +¢e; = 'BSk z BX‘! (1 6‘})3] +e;
< -Bsk +e; < -B (1-7) +e;
S -C1+AB)+(C1-Crpi)
max
< -AB

Thus, s; = g(u4;) < g(-AP), that is, neuron i is unselected; a contradiction. (]

Lemma 3 Let s be an equilibrium state (for the high gain limit), and consider an arbitrary edge;. If all
edges (properly) intersecting edge; are unselected, then edge; is selected.

Proof: Consider an equilibrium state § and a particular neuron i. Assume that all edges which are
intersecting the neuron's edge; are unselected. Then it follows from (15) that any neuron j is either
unselected or has value T;j = 0. Thus, for the high gain limit, Zj T;j sj = 0. From (20) and (17), we
obtain

ui=ZTiij+e,'2C1-Czl—Ii-—
J max

Since J; /lmax < 1, it follows from (10) that ;> Cy - C2 2 A B. Thus, s; = g(u;) 2 g(AP), which implies
that neuron i is selected. (m}

Lemma 4 Let s be an equilibrium state, then for the high gain limit the energy E converges to Dy + D3 »
(2 I,-)forsomeconstantDIandD2=l£2—>0.
i selectad max

Proof: By equation (4) the energy of the circuit is given by:

i
E=2XXTjsisj -Seisi+Z [gl(s)ds.
23 i i



From Lemmas 2 and 3 it follows that the first term converges to zero. For the high gain limit, i.c. 8— 0,

the third term also converges to zero [5). Hence, for the high gain limit, we obtain from (17)
E=-Zeisi=-Z(C1-C27 ) s
] ] max

=-C1Ls; +,£lz_l,-s,-
] max

Since Lemmas 2 and 3 show that the selected set of edges is a maximal set of non-intersecting edges, i.c.
a triangulation, it follows that the number of selected edges is 3n-4-3, where 4 is the number of vertices
on the convex hull of the given point set. Hence, using (12), we obtain

C
E=Dy+D T  )withD;=-C;(3n-h-3)and Dy=--->0. 0O
1 Z(isclecncd‘) 1 l( 2 J}

Theorem S TN(S) will always converge to a stable state. In the high gain limit, a stable state of TN(S)
represents a triangulation of the point set S. Minimizing the weight of the reported triangulation is
equivalent to minimizing the value of the circuit's energy function.

Proof: Follows from Observation 1 and Lemmas 2-4. O

Note that, the above correctness proof for our analog neural circuit is "unusual” compared to the
previous literature. We have not found any such circuit analysis in the existing literature on analog
circuits for other problem areas. The circuits described in the previous literature are pure heuristics
evaluated through experiments only; see Section 1.

3.2 Experimental Results

An analog circuit always migrates towards a state that minimizes its energy. An unfortunate property of
analog Hopfield Nets (and analog circuits in general) is that the circuit's energy might stabilize in a local
minimum which is not necessarily the global minimum. Due to the high dimensionality of the problem,
the current literature considers an analytical evaluation infeasible. Thus, it is necessary that the quality of
the results produced by a circuit is verified experimentally. For this, we have implemented an Analog
Hopfield Net simulator running on a SUN SPARC workstation as well as a parallelized version running
on a Transputer Network. The simulator is essentially a numerical integrator for the system of differential
equations (2). An additional front-end program converts a point set into an analog circuit according to
(9)-(19), and the final stable state of the circuit back into a set of line segments. We selected the following
constants: A =19, B=.1, y=.01, r =.01, B = 8600, C; = 8500, C2 = 8000. It is easy to see that these
constants are consistent with equations (9) to (14). The variable 8 determines how sharply the sigmoid
function rises. It is important to set B small enough to ensure that the circuit operates in the high gain
limit. (For all our experiments S=0.1 was sufficient. Note that 8 may not be equal to 0, because then the
sigmoid function degenerates to a non-differential function, in which case the circuit may not converge at
all.) From Lemma 4 it follows that the energy of the system is proportional to C ( Eﬂd l; ). Hence, C2
]

determines the shape of the energy function and should be set to a large value to create steep valleys.

It is instructive to follow the behavior of our triangulation circuit on a particular example as illustrated
in Figure 2. Figure 2a shows an example point set S and its minimum weight triangulation. For our
circuit TN(S), a neuron i is associated with every pair of points (i.c. a possible edge of a minimum
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weight triangulation). The assignment of neuron numbers to vertex pairs is shown in Figure 2b. The
dynamic behavior of TN(S), from its initial state to a final stable state, is shown in Figure 2¢c. For every
neuron i, the value of s; is shown as a function of time. All neurons start at a random value for s; which
is close to 0.5, and in the final stable state each neuron has a value s; close to either O or 1. The state s; of
neuron 1, for example, first drops from around 0.5 to approx. 0, and then in time steps 8 an 10 it rises to
a value close to 1. The final states of all neurons represent the minimum length triangulation in Figure 2a.

(a)
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Figure 2. Circuit TN(S) converging to a Minimum Weight Triangulation.
(a) Point Set and Its Minimum Weight Triangulation. (b) Assignment of Possible Edges To Neurons.
(c) State Vector s as a Function of Time, From Its Initial State To A Final Stable State.
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Statistical results obtained by executing circuit TN(S) repeatedly on different random point sets of size
n are shown in Figure 3. We compare the average weight of the triangulation produced by our
triangulation circuit (Wry) with the average weight of the actual minimum weight triangulation (Wopr)
and, in addition, with the average weight of a random triangulation (Wg7). The values shown have a
variance of about 9%. The main result of the data displayed in Figure 3 is that, for our tests, the
difference between the optimum weight and the weight of the triangulation produced by our circuit is less
than 2% (variance <2.5%). Computing the exact minimum weight Wopr for n230 turned out to be
impossible, even with a parallel algorithm running on an Intel iPSC/860 hypercube. The fact that for
n230 theW7y value increases only very slowly leads us to conjecture that it will stay very close to the
optimum weight. In this context, another interesting observation is that for n230 the weight produced by
our circuit is more than 50% better than a random triangulation, with steadily increasing difference.
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Figure 3. The Triangulation Circuit Compared to the Optimum and to Random Triangulations:
Average Weight of the Triangulation Produced by our Triangulation Circuit (W7y), Average Weight of
the Minimum Weight Triangulation (Wopr), and Average Weight of a Random Triangulation (Wg7).

4 Analog Neural Circuits For Other Geometric Problems

In this section, we outline the design of analog neural circuits for the other geometric problems listed
in Section 1. Due to space limitations, we can only give brief expositions of our results. More details will
be provided in the final version of this paper.

The analog circuit described in Section 3 can be modified to compute a minimum weight
triangulation for a simple polygon P with holes. The holes may be polygonal or simply points.
To our knowledge, no polynomial time algorithm is known for this problem. (This is in contrast to the
case of polygons without holes for which a polynomial time algorithm exists (8].) Consider the set S of
vertices of P and use the circuit (for S) described in Section 3 with the following two modifications:
Change equation (15) to Tjj = -B X;;j Y;j (1-8;j) where Y;j = 0 if at least one of the edges represented by
neurons i or j is a boundary edge of P, or lies (partially) outside P, and Yij = 1 otherwise. For the initial
state, set s; = 0 for all neurons i corresponding to an edge that lies (partially) outside P, and use (18)-(19)
to set the initial state of all other neurons. It follows analogously to the analysis given in Section 3 that
such a circuit produces a triangulation where all boundary edges of P are selected and all edges outside P
are unsclected. The energy of the circuit is proportional to the total weight of the selected edges (plus
some constant).

Minimum rectangular partition of a rectilinear polygon with holes: Consider the problem
of partitioning a rectilinear polygon into non-overlaping rectangles using the minimum amount of "ink".
More precisely, let P be a rectilinear polygon with holes (rectilinear or point holes). We wish to partition
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P into rectangles whose interiors are non-intersecting so that the total length of all edges inserted for the
partitioning is a minimum. If a given rectilinear polygon is hole-free then polynomial time algorithms
exist; but even when point holes are inserted the problem is NP-complete [11). It is interesting to observe
that minimizing the number of rectangles is different from minimizing the total edge length [10).

Next, we describe the construction of an analog circuit for determining a minimum length rectangular
partition of a rectilinear polygon with holes. The input to the problem is the description of the polygon P
(with its holes) with a total number of vertices equal to n. The output is a set of rectangles which
represent a rectangular partition of P. Consider the grid induced by P and defined as all horizontal and
vertical line segments inside P connecting one vertex of P to the boundary of P. A grid-point is the
intersection point of a horizontal and vertical line segment of the grid, or of a horizontal (vertical) line
segment and the boundary of P. The grid has at most O(n2) vertices. Each solution rectangle has its
vertices on the grid. Thus there are at most O(7#) possible rectangles. Some rectangles may lie (partially)
outside P and will be discarded; all other rectangles are termed candidate rectangles. The task of
determining whether a rectangle is a candidate rectangle or not is trivial. Furthermore, in a preprocessing
phase, we determine for each pair of rectangles whether or not they intersect. The circuit consists of N =
O(n*) neurons. Each neuron is assigned one of the possible candidate rectangles. Select constants §> 0,
>0, r>0, B>0, C;>0, and C2>0 subject to (9)-(14). Set Tj=-BZ; (1-8,-,-) where Z;; = 1 if the two
candidate rectangles associated with neurons i and j intersect, and Zjj =0 otherwise. The bias is set to e;
= C] - C2 (0j /omax) Where o; refers to the circumference of the rectangle associated with neurons i, and
Omax = maxi{o;}. The initial state is set as defined in (18) and (19). It is easy to see that this circuit has
properties analogous to the ones described in Observation 1, Lemmas 2-4, and Theorem 5. Thus, a valid
partitioning is selected, and the energy of the circuit is proportional to the total length of the inserted
edges (plus some constant).

Maximum length subset of non-intersecting line segments: Consider the problem of
selecting from a given set S of n line segments a subset S’ of non-intersecting line segments such that the
total length of the selected line segments is maximized. A straight forward adaptation of the circuit
presented in Section 3, solves this problem as well.
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