154

Further Dynamic Computational Geometry!
— Extended Abstract —

Mordecai J. Golin? Christian Schwarz® Michiel Smid3

1 Introduction

Atallah [2] introduced the field of Dynamic Computational Geometry in which he assumed that the inputs
to his problems were not static objects, but points which moved over time with what he defined as k-motion.
A point p moves with k-motion in d-dimensional space if p(t) = 2?:0 Cit' where t is a time parameter and
the C; are constant d-dimensional vectors. Thus, Cy is the initial position of p at time ¢ = 0.

In his paper Atallah studied the dynamics of a few of the basic problems in computational geometry
when the input points have k-motion. As an example, he examined the problem of identifying the closest
(furthest) pair in a set of n points moving with k-motion. He proved that the closest (furthest) pair changes
at most O(\zx(n?)) times as ¢ increases to infinity and that the sequence of these changes can be computed
in O(dk?n? + Agi(n?)log n) time, where),(n) is the maximal size of an (n, s)-Davenport-Schinsel sequence.
(The function A, (n) is slightly superlinear for any constant s.) He also showed that if the points are planar
(d = 2), then the points on their convex hull change only O(n)g(n)) times and gave efficient algorithms for
computing the intervals of time in which a particular point appears on the convex hull. In a more recent
article, Fu and Lee [4] have shown how to extend Atallah’s ideas in order to compute the Voronoi diagram
of planar points under k-motion.

In this paper we examine a number of other problems in computational geometry — such as finding
minimum spanning trees, proximity questions and range reporting — under the k-motion model. We provide
algorithms for constructing data structures that support efficient queries. As an example, one of the data
structures that we present supports answering queries of the type “What is the minimum spanning tree of
the n points for a specific time ¢?” in time O(n) (which is obviously optimal). See Table 1.

In the rest of this paper, S is a set of points that are in k-motion. We assume that one memory location
is needed to store a real number. Consequentially, evaluating the location of a point at time ¢ requires O(dk)
time and storing the input equations requires O(dkn) space. We furthermore follow the practice of [2] and
[4] and assume that it is possible to find a real root of an order k polynomial in constant time, and to find
all of the (at most k) real roots in O(k) time. The square of the distance of two points, which will be used
frequently, can be computed in time O(dk?). To make the presentation of our results simpler, we assume
that d and k are at most n, meaning e.g. that log(d - k - n) = O(log n).

2 Nearest neighbor problems

We consider the following query problems:
All nearest /furthest neighbors: Report U,es (nearest/furthest neighbor(p)) at time t.
m-th nearest neighbor: Let p be one of the n moving points. Given a query time ¢ and a number
1< m < n-—1, report the m-th nearest neighbor of p in S\ {p} at time ¢.
All m-th nearest neighbors: Given a query time ¢ and a number 1 <m<n-1, report
U,es (m-th nearest neighbor(p)) at time t.
Atallah gave an algorithm for the nearest/furthest neighbor problem. Let p be a fixed point of S. For

. every other point g in S, let foq(t) be the polynomial in ¢ of degree 2k that expresses the square of the distance

between p and g. Consider the lower envelope of these functions, where g varies over all points in S\ {p}. The
envelope consists of portions of the functions Spq(t), ordered w.r.t. time. Each portion of the lower envelope
corresponds to an interval [t;, 3] such that for any ¢ € [t,, 5], the value ming (f,q(t)) is attained by the same
function fpy/(t). Le., we have a partition of the positive time axis [0, 00] into intervals of fixed answer (if we

1 This research was supported by the European Community, Esprit Basic Research Action Number 7141 (ALCOM II).

2INRIA Rocquencourt, 78153 Le Chesnay, France, email: golintmargaux.inria.fr. The research of this author was also
partially supported by NSF grant CCR-891852.

3Max-Planck-Institut fir Informatik, W-6600 Saarbriicken, Germany, email: {schvarz ,michiel}€mpi-sb.mpg.de.

{| Problem Preprocessing Time | Space | Query Time ||
All Nearest/Furthest Neighbors | dk*n® + nAzx(n)logn nAzx(n) n
m-Nearest Neighbor dk*n + kn‘logn kn? logn
All m-Nearest Neighbors dk*n® + kn’logn kn’ n
Minimum Spanning Tree dk*n® + kn*logn kn* n
Proximity Counting dk*n® + kn*logn kn* logn
Reporting dk?n? + kntlogn Ak(n?)logn | logn+ A

Maxima Counting dkn‘logn dkn? logn
Reporting dkn’logn dkn? logn+ A

Range Query Counting dknlogn dkn logn
Reporting dknlogn dkn logn+ A

Table 1: Summary of this paper’s results. The input points have dimension d and move with k-motion; 4
denotes the sise of the answer. Ax(n) denotes the maximum size of an (n, k)-Davenport-Schingel sequence.

assume that motion starts at time ¢ = 0). Since the nearest neighbor of p at time ¢ is the point ¢’ such that
fpq' (t) = minge 5\ (p} (fpq(t)), finding the nearest neighbor of p at time ¢ reduces to locating the interval [t1, 2]
containing ¢. The lower envelope has sise O()zx(n)) and can be computed in time O(dk?n + Az;(n)log n)
by the divide&conquer algorithm of Atallah [2]. Storing the interval endpoints of the envelope in a binary
tree, nearest neighbor queries for point p can be answered in time O(log A3x(n)) = O(log n).

To solve the all nearest neighbor problem, we have to do the above for every point p in S. Doing this,
the size of the structure and the preprocessing time are multiplied by n and it is not satisfying to answer
queries in time O(n -logn). However, since the query time ¢ is the same for every point P, we can store the
lower envelopes for the different points in one data structure: As mentioned above, the lower envelope for
a point p induces a partition of the positive time axis [0, o] into intervals where answers stay fixed. We
store the intervals of all n envelopes in an interval tree [5]. The tree contains O(n)zk(n)) intervals. Each
interval is labeled by a pair (p,¢’) denoting that in this interval, ¢’ is the nearest neighbor of p. Note, that
by construction, the number of intervals containing the value ? is, for any ¢, exactly n. Then, we can report
the nearest neighbor for every point in S in time O(n): we report all the intervals containing ¢ in the interval
tree. This takes time O(log #intervals + sise of the answer) [5], which is O (log (nAzk(n)) + n) = O(n).

Of course, we can use the same approach for the all furthest neighbor problem: Use the same algorithm
for the upper envelope.

Theorem 1 For the dynamic all nearest (furthest) neighbor problem there ezists a data structure of size
O(nAzx(n)) that can be built in time O(dk*n? + nAgi(n)logn), such that the nearest (furthest) neighbor of
each point at a query time t can be reported in time O(n).

To solve the m-th nearest neighbor problem for a specific point p, we need to store the whole arrangement
defined by the functions f4(), ¢ € S\ {p} and not only its lower envelope. We do this by using persistent
data structures [3]. The data structure is built as follows. Compute the at most 2k (*;?) intersections
of the functions fy4(2),q # p, and sort them w.r.t. time t. Then, make a sweep over time. Between two
intersections, the vertical order of the n — 1 curve segments remains fixed. We store these segments in a
data structure for ordered lists that allows queries of the form “return the m-th element of the list” in
O(logn) time, e.g. a binary search tree storing the elements of the list. The elements are stored, together
with their ranks, in the leaves. Note that then, exchanging two list elements causes only O(1) changes in the
structure. At each intersection of two curves, two adjacent elements of the list flip. We perform this update
in a persistent data structure. Having processed all intersections, we have obtained a data structure of size
O(sise of list + #intersections) = O(n + kn?) = O(kn?) such that a query of the version of the list that
exists at time ¢ can be answered in time proportional to the query time of the original (non-persistent) data
structure for the list. The preprocessing time is dominated by the time needed to compute the distances
and to sort the intersections, i.e. O(dk?n + kn?log n). We have the following

Theorem 2 For the dynamic m-th nearest neighbor problem there ezists a data siructure of size O(kn?)
that can be built in time O(dk?n + kn?logn), such that the m-th nearest neighbor of the point p€ S at a
query time t can be reported in time O(logn).

155

156

Of course, this can be extended to the all m-th nearest neighbor problem, analogous to the extension for
m = 1 (nearest neighbor) and m = n — 1 (furthest neighbor) in Theorem 1. We have

Theorem 8 For the dynamic all m-th nearest neighbor problem there ezists o data structure of size O(kn3)
that can be built in time O(dk?*n? + kn®logn), such that the m-th nearest neighbor of each point at a query
time t can be reported in time O(n).

3 The dynamic euclidean minimum spanning tree problem

Consider the complete graph G(t) for the points in S at time ¢. Its nodes are the points at this time and its
edges are the line segments joining pairs of points. The EMST is a spanning tree of G(t). In this section, we
want to build a data structure for the points in S, such that for any query time ¢, we can report the EMST
at this time.

It follows immediately from Kruskal’s algorithm that the EMST is fully determined by the ordering of
the edge lengths. (See any standard algorithms book.) Therefore, the EMST can only change if the ordering
of the edge lengths changes, i.e., if two adjacent edges are flipped in the ordering.

Assume for simplicity that at any time there can be at most one flip. Or, equivalently, the ('2‘) functions
representing the distances between pairs of points have the property that no three of them intersect in one
point.

Suppose that edges e and €', with lengths |e| and |e’|, respectively, flip at time t. That is, there is an
€ > 0, such that during the time interval [t — ¢,t + €], e and e’ are adjacent in the edge ordering, and,
furthermore, |e| < |¢’| at time ¢ — ¢, |e| = |¢’| at time ¢, and |e| > |¢/| at time ¢ + €.

Lemma 1 Ifat timet—e¢, e and ¢’ both are not in the EMST, or e and ¢’ both are in the EMST, or e is not
in the EMST and €’ is in the EMST, then the EMST does not change during the time interval [t — ¢, + €.

Because of this lemma, we only have to consider the case where, at time ¢ — ¢, € is in the EMST and ¢’
is not. Define the fundamental cycle of a non-tree edge €’ as the cycle of the tree that arises when we add
e’ toit.

Lemma 2 Suppose that at timet —¢, e is in the EMST and €' is not. If e is not a part of the fundamental
cycle of €', then the EMST does not change during the time interval [t — ¢,t + €]. Otherwise, the EMST
changes at time t. At that time, edge e is replaced by edge €’.

At this moment, we know exactly how the EMST changes over time. How do we implement the algorithm?
At the start, we construct the (’2‘) functions each of which describes the square of the distance of a pair of
points, as a function of t. Then we compute the intersections of these functions, and sort them w.r.t. their
time parameters. Since the functions have degree 2k, there are at most 2kn* intersections, each corresponding
to a flip of two edges.

Given these intersection points, we can make a sweep over time. Each time we encounter an intersection,
we check the conditions of the above two lemmas. If the EMST changes, we delete one edge and insert the
new one. Checking the conditions and inserting/deleting edges can be done using Dynamic Trees [8].

We have seen how to keep track of the changes of the EMST. Now we describe the data structure that
will be used to answer queries. We shall use an interval tree [5), where each interval is labeled by an edge
of the graph. Interval [i, j], is in the tree if and only if edge r is part of the EMST from time i to time j-
Then, a query at time ¢ is simply solved by reporting all the intervals containing the value £. This takes time
O(logn + A), which is O(n), since A =n — 1.

During the sweep over the intersections of the-curves, we compute,-for each edge e, a list L(e) containing
the time intervals when e is in the EMST. At the end of the sweep, we insert these intervals into the interval

""tree. This gives a data structure of size O(kn*), since there are only that many flips, and each flip consists

of adding and removing only one edge. The dynamic tree operations implementing a flip take logarithmic
time, and the interval tree can be built in O(kn*logn) time. Also, the initial computation of the distances
and sorting of the intersection points take time O(dk?n?) and O(kn*logn), respectively. Therefore, the
preprocessing time is O(dk?n? + kn*logn).

We have proved the following

Theorem 4 For the dynamic EMST problem, there ezists a data structure of size O(kn*) that can be built
in time O(dk?n? + kn*log n), such that at any time t, the EMST at that time t can be reported in time O(n).

4 Proximity problems

In this section, we want to build data structures for the points in S, such that for any query time ¢ and any
distance r, we can (i) count the number of pairs of points which are at most r apart from each other at time
t or (ii) report all such pairs. We shall first describe a simple method that works for both versions of the
problem and then improve the storage bound for the reporting problem.

As in the EMST problem, we construct the ('2‘) (squared) distance functions, compute their pairwise
intersections and sort them w.r.t. their time parameters. Drawing these functions in one graph where ¢ is
shown at the horizontal axis and the distances are shown at the vertical axis, our problem has now turned
into the following: Given an arrangement of ('2‘) polynomial curves in the plane, report (count) all curves
lying below point (2, r%).

This problem is implicitly solved by Agarwal et. al. [1]. They treat the problem of Jordan arcs that
intersect a halfplane which they transform (by dualization) to the problem given above in order to argue
about the space complexity of their algorithm. Of course, the ideas can be used to solve our problem directly.
We just give a sketch here, a detailed description can be found in [6].

The simple method is a straighforward extension of the point location method of Sarnak and Tarjan [7],
and it works for reporting and counting.

The data structure is built analogously to the one used for the m-th nearest neighbor problem in Section 2.
Given the intersections of the curves, we make a sweep over time. Between two intersections, the vertical
order of the curve segments remains fixed. We store these segments in a data structure for ordered lists,
e.g. a balanced binary search tree. At each intersection of two curves, two adjacent elements of the list flip.
We perform this update in a persistent data structure. Having processed all intersections, we have obtained
a data structure of size O(size of list + #tintersections) = O(n? + kn*) = O(kn*) such that a query of a
version of the list that exists at time ¢ can be answered in the same time as the original (non-persistent)
data structure for the list, plus the time to find the right version to search in, which is O(log #versions) =
O(log(kn*)) = O(log n).

Therefore, let us first ignore that the lists are persistent when explaining the point location algorithm.
Intuitively, to answer a point location query for point (t,7?) in the subdivision defined by the curves, we
first have to find the version of the list at time ¢, i.e. the intersections t,,¢; such that ¢; < ¢ < t;. This takes
time O(logn). In this list of curve segments, we locate the point using its vertical coordinate r2.

Since we store an ordered list of segments in a balanced search tree, locating a point p = (t, r) vertically in
this list, i.e. finding the segment that lies directly below p, takes O(log n) time. Location of point p = (¢, r?)
is then solved by locating the point vertically in the list which is valid at time . Note, however, that
the different lists are stored implicitly in the persistent data structure. Therefore, from the discussion of
persistence above, the total point location time is O(log n).

Reporting all curves below a point is straightforward: we just traverse the list from the segment directly
below the query point downwards to the first (lowest) segment, reporting the curves to which these segments
belong. To solve the counting problem, we associate the number of curves below a segment with each segment
stored in a list. We have the following

Theorem 5 The prozimity problem at time t and distance r can be solved by a data structure that can be
built in time O(dk?n? +kn*logn), uses O(kn*) storage, and answers report and count queries in O(log n+ A)
and O(logn) time, respectively.

For the reporting version, this result can be improved w.r.t. storage requirements. Consider the data
structure given above and ignore at the moment that the various lists are stored in a persistent data structure.
We have g lists, each.of sise. m = (3), where ¢ = O(km?) = O(kn*) is the number of intersections among the
m curves. The reporting problem was solved by locating point (t,7?) in the list corresponding to interval
[t1,%2] such that ¢ € [t;,1;], followed by reporting all elements below the point. To locate (¢, r?) vertically in
a list, a binary search tree was used. The data structure was essentially the same for counting and reporting.

Now, if we only want to solve the reporting problem, we can use a simpler method: we do not need to
locate (t,72) in a binary search tree; we just have to find the correct list corresponding to interval ¢; <t < ¢,
start at the beginning of the list (containing the lowest curve segment), walk along the list and stop after
we have reached a segment that lies above (2, r?).

The idea for the improvement [1, 6] is now as follows. During the preprocessing, we use the original
sequence Z = Z),...,Z, of lists to create a considerably smaller sequence 2’ = Z3,..., 2, of lists which
will be used for the queries. In Z, each intersection of two curves causes two adjacent list elements to flip.

157

158

In the smaller sequence Z’, we do not create a new list for every flip, but only for flips at certain positions
by < ... < by, called borders. That is, we walk through the sequence Z of lists, and if there is a flip at some
border position from Z; to Z;;1, and we have already created lists Zi,..., Z}, j < 1, we create a new list
Z§+1 by flipping the elements which are at the border position in Z;. Note that in the list Z}, these elements
need not be adjacent, since in the lists of 2’, we “forget” the flips that are not at border positions. As a
result we obtain a sequence Z’ where elements are ordered across borders and the order between two borders
is lost. The sequence Z = Zj,..., Z, is slimmed down to a sequence Z’' = Z},..., Z! that corresponds to a
subsequence Z;,,...,Z;, of Z as follows: Z;, = Z;,, flips occur at border positions in Zi;,2<j <u,and at
non-border positions in Z;_4,,...,2;;,,-1,1 < j < u. We say that the lists Zi;y ey Zizy, -1 (and the time
interval covered by them) are represented by ZJ’~. Therefore, the number of lists in 2’ depends on the total
number of flips that can occur at border positions. The new search algorithm is as follows.

First, find the list representing time ¢ in the sequence 2’ = Z7j,..., Z., say Z/, in O(logu) time. Then,
from the beginning of Z], walk up reporting all curves lying below p = (¢, r2), until a curve is found that is
not below p . Walk further to the next border position, say b;, checking each curve.

Since the elements are ordered across borders, we are sure that curves beyond position b; cannot con-
tribute to the answer. Note that we can afford to check elements that do not contribute to the answer
without affecting the asymptotic query time if their number is proportional to the size of the answer.

The goal is now to choose positions b;,...,b in the preprocessing algorithm such that (i) ! is small, (ii)
there are not many flips at these positions, and (iii) the positions are not too far apart from each other.

Let the set of exchanges of positions j and j + 1 in the lists of the sequence Z be denoted by j-flip.

Lemma 8 ([1, 6]) We can choose border positions b, ..., b such that |b;-flip| = O(Azk(m)) for 1 <i <1,
by >m/3, and 2 < b;/b;_1 <3 for2<i<l.

Theorem 68 The size of the structure is O(A2x(n?)log n), and the preprocessing time is O(dk?n?+knlogn).

Proof: From Lemma 3, we have to store O()A3x(m)log m) lists, since this is the total number of flips
across borders. Since we store the lists persistently and the sise of each (original) list is m, we need
O(m + Azx(m)log m) = O(Azx(m)log m) space. Finally, we have m = (3). The additional preprocessing
that is needed in comparison to the simple method described before is still dominated by the time to compute
the curves and all their intersections, i.e. O(dk?*n? + kn*logn).]

Theorem 7 The query time of the structure is O(logn + A), as in the simple method.

Proof: See the algorithm given above. Finding the right list to search in (the lists are kept separately
only conceptually, since we store them in a persistent data structure) takes time O(log u) = O(logn), since
u = O(Agx(n?)log n). Then we report answers until we encounter an element that is not part of the answer.
Let b; be the last border position that was crossed before this event. Then we have A > b;. We proceed
until we reach the next border position b;,;. Therefore, the total time to search the list is O(b;4+1). From
Lemma 3, b;;1/b; < 3, and therefore b;;; < 3b; < 3A. [|

5 The dynamic maxima problem

We want a data structure such that at any query time ¢, we can report the maximal elements of S at this
time, or count their number.

A point p = (p',...,p?) dominates point ¢ = (¢%,...,¢%) if p# gand p* > ¢ forall 1 < i < d. The
mazimal points in S are those points that. are not dominated by.any other point in S.

Let p be a fixed point of S. We want to compute the time intervals during which p is maximal. For

-~ each point ¢ # pin S, we compute the time intervals during which p is dominated by g, as follows. The

differences p*(t) — ¢*(t),1 < i < d, are polynomials of degree at most k. For each 1 < i < d, compute
the at most [(k + 1)/2] < k intervals during which p*(t) — ¢*(t) < 0. This gives at most dk intervals. The
intersection of these intervals yields all time intervals during which p is dominated by g, i.c., pis not maximal
in S. Computing the complement of these intervals gives at most dk + 1 time intervals during which p is not
dominated by g.

Having done this for each point g, we have n — 1 lists of disjoint intervals, one list for each point ¢ #p.
Each list consists of at most dk+1 intervals. Compute the intersection of all these intervals. This intersection
consists of at most (n — 1)(dk + 1) intervals, during which point p is maximal in the set S.

Repeat this for each point p of S, and store the resulting collection of at most n(n — 1)(dk + 1) intervals
in an interval tree. With each interval, store the name of the point that is maximal during it.

To report all maximal points at a given time £, search in the interval tree for all intervals that contain ¢,
and report the points corresponding to them. These points give the maximal points at time t. The counting
version of the interval tree enables us to count the number of maximal points at any given time t.

Theorem 8 For the dynamic mazima reporting problem there ezists a data structure of size O(dkn?) that
can be built in time O(dkn?logn), such that for any t, all A mazimal points at time t can be reported in
time O(logn + A). For the corresponding counting problem there ezists a data structure using equal space
and preprocessing, such that the number of mazimal points at time t can be reported in time O(logn).

6 The dynamic range query problem

Let T = I; x...x I3 be a hyperrectangle. We want a data structure for the following query problem: Given
a query time ¢, report all points in S that are contained in Z at time ¢.

Again, we fix a point p. We want to compute the time intervals during which p is contained in Z.

For each 1 < 7 < d, do the following: Let I; = [a,b]. We want to find all time intervals during which
a < p*() < b. This can easily be done by computing the roots of the polynomials p*(t) — a and p'(t) — b.
This gives at most k pairwise disjoint intervals.

Having done this for each i, we compute the intersection of these intervals. This gives at most dk intervals
during which p is contained in the query rectangle.

We do this for each point in S and store the resulting collection of at most dkn intervals in an interval
tree. With each interval, we store the name of the point corresponding to it.

To report all points that are contained in T at a given time ¢, search in the interval tree for all intervals
that contain ¢, and report the points corresponding to them. Of course, as in the maxima counting problem,
we can also count the number of points that are contained in 7 at time ¢.

Theorem 9 For the dynamic range query problem there ezists a data structure of size O(dkn) that can be
built in time O(dknlogn), such that all A points that are contained in the hyperrectangle I at a query time
t can be reported in time O(logn + A). For the corresponding counting problem there ezists a data structure
of equal size and preprocessing, such that the number of points that are contained in the hyperrectangle T at
a query time t can be reported in time O(logn).

Acknowledgements: We would like to thank Marc van Kreveld for very helpful discussions.

References

[1] P.K. Agarwal, M. van Kreveld and M. Overmars. Iniersection queries for curved objects. Proc. 7th
Annual ACM Symp. on Computational Geometry (1991), 41-50.

[2] M.J. Atallah. Dynamic computational geometry. Proc. 24th FOCS (1983), 92-99.

[3] J. Driscoll, N. Sarnak, D.D. Sleator and R.E. Tarjan. Making data structures persistent. J. of Computer
and System Sciences 38 (1989), 86-124.

[4] 3.-3. Fu and R.C.T. Lee. Voronoi diagrams of moving points in the plane. International J. of Computa-
tional Geometry & Applications 1 (1991), 23-32.

[5] F.P. Preparata and M.I. Shamos. Computational Geometry, an Introduction. Springer-Verlag, New York,
1985.

(6] M. van Kreveld. New Results on Data Structures in Computational Geometry. Ph.D. Thesis, University
of Utrecht, The Netherlands, 1992.

[7] N. Sarnak and R.E. Tarjan. Planar point location using persistent search trees. Comm. of the ACM 29
(1986), 669-679.

[8] D.D. Sleator and R.E. Tarjan. A data structure for dynamic trees. J. of Computer and System Sciences
26 (1983), 362-391.

159

