160

Reporting Overlaps in a Dynamic Interval Set
by Filtering Search

Donald Mullis

Digital Equipment Corporation
Workstations and Servers

Abstract

The concept of filtering search[2] has been applied to the problem of
reporting overlaps in a static set of intervals; this paper describes how
it may be applied to the dynamic variation of that problem. The new
algorithm retains the O(logn + k) reporting time and O(n) space of
the static algorithm, where k is the output size. We say that insertion
and deletion require O(logn + k) time as well, with k regarded as the
number of segments that would be reported by a hypothetical query
with the update segment.

1 Review of filtering search

Refer to Chazelle[2] for a thorough explanation of the idea of filtering search.
We reformulate his definition slightly here so that it plainly serves for a
discrete as well as a continuous domain, and lends itself to dynamization.

We will indicate a semi-open interval with [a,b), where a,b € ® and
a < b. Note that by definition, [a,b) and [b,c) do not intersect. Call an
interval with explicitly defined endpoints, such as an element of the in-
put, a segment. Call the stored set of n possibly overlapping segments
S = {[ai,b:)};<i<n- The task of the static algorithm is to report the seg-
ments in S that intersect a query segment g. Call the reported set S(q), and
as is customary, k = |S(q)|.

W(S) is a window-list encoding S. The jth window of the set records a
lower bound point L;. The W; are stored in a searchable list according to
their L;, and each contains-an-unsorted list of just those segments of § that
intersect [Lj, L;j4+1). Note that interval [L;, L;) is not necessarily in S.

Let p be the number of windows in W(§). W(S) initially contains only
Wy with L; = —oo, and an implicit Wy, that provides Ly4; = +00. Thus
each point of ® maps to exactly one window.

Since § is static, the L; may be chosen by sorting all endpoints, then
sweeping from low to high, introducing a new window at the point where
a newly swept endpoint would otherwise cause the current window W; to
violate a splitting predicate

Pstatic(W) = (d mingew |S(z)| + € > |W]), 6§>1, e>1

where the integer constant parameters § and € control a time-space tradeoff.
Splitting away a new window whenever Ps,:i(W) becomes false evidently
ensures that the number of segments linearly searched to report the k in-
tersections of a query point with elements of W is O(k), and therefore the
reporting time (less the time to find W), is O(k) as well. In his slightly
different formulation, Chazelle[2] claims that performance for query with an
interval is similar, and proves that total storage consumption is O(n).

2 A dynamic variation

The algorithm we introduce here is dynamic in the sense that segment in-
sertions and deletions may be interspersed with queries, with any of the
operations requiring time at worst proportional to the number of segments
k belonging to S that intersect ¢, plus O(logn) time to find some window
containing ¢. The window may be located in time O(logn) by storing the
window set in a threaded balanced tree, or in a skip list [5, 6]. Skip lists
simplify the implementation.

As a shorthand, we will say that a window W; intersects a segment if its
associated interval [Lj, L;1) intersects the segment. A window’s segment
set may be partitioned as follows: those segments that each cover the window
have an A-part in that window, and the rest, that merely intersect, have
B-parts. Formally, [a,) intersects W; in an A-part iff @ < L; and b > Ljy;.
This implies that every segment is itself partitioned by windows into zero,
one, or two B-parts, and zero or more A-parts.

The following simplification of the splitting predicate aids our effort to
achieve a dynamic algorithm. We set § = 2 and replace mingew,|S(z)| with
the number of A-parts of the window denoted by |4;|, producing

P(W;) = (214j] + € 2 |Wj]), e21

161

162

Note that |4;| is a lower bound on mingew;|S(z)|. We will prove that a
window list maintained by our dynamic algorithm (which satisfies P) may
be searched in the same order time and consumes the same order space as
Chazelle’s static window list. The reader may gain a better intuition for all
of this by verifying manually that each window in Figure 1 satisfies P.

Fig. 1. A window-list that satisfies P, with € = 1.

Some updates require adjacent windows to be merged. This circum-
stance is detected when P applied to their union evaluates true. Both in-
sertions and deletions may be handled by the same three-step algorithm:

edit —update segment lists of intersected windows

split —split all windows intersected by ¢ that violate P

merge — merge adjacent window pairs iff at least one of the pair is
intersected by ¢, and their union would satisfy P

A superscript E, S, or M applied to a window or window list denotes its
state following edit, split, or merge respectively. Thus,

W(S) S WE(S") B2 wS(s") E WM (s)

where S’ denotes the segment set after its update by edit.

It may be worth noting that although the static algorithm produced a de-
terministic window list from its @ priori segment set, the dynamic variation
may allow many legal window-list encodings of a given segment set.

We shall prove upper bounds on reporting time and storage consumption
with an argument based on merge, and later prove that the k term in the
O(log n+k) update time is no worse than linear by showing that the number
of segments of S examined is at worst proportional to the number intersected
by gq.

3 O(logn + k) reporting time, and O(n) storage

The proof requires counting the number of endpoints of S that intersect the
interval [L;, Lj41) of each window W;. We'll call this quantity E;.

Since each intersection of a segment with a window contains either an
A-part or at least one endpoint:

W3]
[W;j U W]

E; + |Aj| (1)

<
< Ej+Ejn+14; N4 (2)

Theorem 1 Reporting time, after locating some g-intersected window, is

o(k).

Proof: Recall that completion of merge requires that no possible union of
abutting windows would satisfy P:

VWicicp: ~P(W; UWi41)
Expanding P, then substituting inequality (2) into the left-hand side,

2|14;NAja| + € < [W;UW,4,|
2(|W; UWjga| - (E; + Ein))+e < WU Wi|
Wi UWjpa| < 2(Ej+Ejp)—c¢
W;| < 2(E; + E;t1)—¢€ 3)

Now that we have cardinality of windows on the left of the inequality,
and number of endpoints on the right, we sum the right-hand side of in-
equality (3) over all but the last of the windows that intersect ¢ = [a,).
Call the leftmost and rightmost such windows W, and W, respectively.
Then apply inequality (1) to W,,, and simplify:

Pp—1

Pb
YWl < 23 (Ej+Ejn) - e(ps - pa) + Wy,

J=Pa J=Pa

163

164

Po—1
< (ZE+ > E)+(Ep,,+|Am|)
J=Pa —Pa+1
< 4 Z Ej + |Ap,| (4)

J=Pa

In order to proceed, we need to establish an upper bound on the sum of
the E;. Observe that each of the k segments of W(q) gives rise to two end-
points, which may or may not fall within [L,,, Lp,+1); so E]_p E; < 2k.
Combining with inequality (4) and noting that |A,,| < k yields:

Pb
YWl < 9% O

J=Pa
Theorem 2 Overall storage is O(n).

Proof: Follows immediately from the O(n) time to report the segments that
overlap [—o00, +00), and the observation that all the storage of W(S) would
be examined. O

4 O(logn + k) update time

An update segment ¢ may be added to a window in constant time or, by
analogy to the reporting task, deleted in O(k) time, so edit consumes not
more than O(logn + k) time.

The windows of WE(S) examined and possibly divided by split contain
a total of segments numbering O(k). We will later show that each segment
is examined not more than a constant number of times. The two kinds of
updates, insertion and deletion, happen to require that the windows con-
taining B-parts of ¢ and A-parts of ¢ respectively be examined and possibly
split. Each such window W¥ is first tested against the splitting predicate.
Upon failure of the predicate after edit for either insertion or deletion the
window may be regarded as containing an excess of exactly one B-part or
alternatively, a deficit of one A-part.

Given below is a procedure for splitting a window in such a state into
successors that are each guaranteed to satisfy P. Incidentally, it is this
procedure that imposes the constraint that § = 2 on the algorithm as a
whole.

Procedure Split Win:

i. If any endpoint within WE belongs to a B-part of a case AB
segment that half-covers WE, then a split into two
windows at that endpoint suffices. (One loses a B-part,
the other gains an A-part.)

ii. Otherwise, set £ (resp. r) to the leftmost (rightmost) of
right (left) endpoints of WZ.

ili. If £ <7, then a split into two windows suffices, at any case BB
point between £ and r inclusive. (Both lose a B-part.)

iv. If £ > r, then three split-windows are necessary and case BAB
sufficient; boundaries at 7 and £ suffice. (Proof below.)

Figure 2, below, may be of help in visualizing the cases.

case AB case BB

e—0 —o 5
L 3 L 341 1 r
case AB case BAB
¢ : | o) ——— ¢
: 1

Fig. 2. Examples of the cases of SplitWin, with ¢ = 1.

165

166

Lemma 1 Split Win finds the minimal number of split-windows, which num-
ber does not exceed three.

Proof: Since SplitWin is invoked iff =P, at least two split-windows are re-
quired. SplitWin produces three split-windows iff £ > r. If £ > r, the largest
two split-windows possible that abut neighbors WE ~, and WJ +1 would span
[L ,7) and [¢, L} E) (see case BAB of Fig. 2). Ma,kmg either split-window
any larger would either degenerate one of its A-parts into a B-part, or in-
troduce a new B-part. So if £ > r, at least three split-windows are required.

To see that three split-windows suffice, we need only prove that at least
one B-part of WjE contributes an A-part to the central split-window that
spans [r,£). This is indeed the case, since r being the rightmost of the left
endpoints, and £ the leftmost of the right endpoints, all segments intersecting
the central window would be A-parts. O

Lemma 2 The split step requires O(k) time.

Proof: The algorithm described above for testing and possibly splitting a
window requires not more than a constant number of references to each seg-
ment of the window (by inspection of SplitWin). Only those windows that
intersect g are examined, and together they contain O(k) segments. O

Before turning to the merge step, we note that upon completion of
split, P is satisfied by every window: V WS € W5(8'): P(WS) Storage
consumption of W5($’) may exceed the upper bound of Theorem 2, but not
by more than a factor of three, since each WJE was split at worst into thirds.
So this transient storage requirement is still O(n).

Finally, achieving O(logn + k) update time requires that merge execute
in O(k) time. To show that this is possible we first derive upper bounds for
window-to-neighbor merge time, and a couple of supporting results.

Lemma 3 Testing and possibly merging window WS with W k1 Tequires
O(|WS |) time.

Proof: The worst case involves the pair of an endmost window intersected by
¢, and a non-intersected neighbor. Let st and W;,; respectively identify
the windows, where ¢ = +1.

Consider that IAS NAj4il < |A5|, and |Ws UWiji| > |Wj4i|. Merging
is indicated iff-2 IA MNAj4+i| +€2 |W U Wj4|, which would require

2[4f| + ¢ W, (5)

Therefore, to trivially reject the possibility of a merge involving an exces-
sively large |W;;| requires no more knowledge of W;; than its cardinality,
which we may have maintained for each window at no additional cost. The
trivial rejection test is inconclusive only if 2 lAf | + € > |Wj4i], in which
case an exact test (and possible merge) will require only O(IVVJS |) steps. O

Corollary 4 Merging a window Wf with a neighbor increases its size to no
greater than 3|W?| + ¢.

Proof: Applying inequality (5),

P uwial < W]+ Wl
< |WP|+2/45| + e
< 3|W5|+e o

We now observe that if two windows WS and Ws cannot be merged,
neither can they be after one of the two has been modxﬁed by merging with
its other neighbor. Formally,

P (WJS U W]‘S:,_,-) = P (WJS (W_1+z UW; +2:)) ,1==1 (6)

This follows from the observation that merging two windows neither in-
creases the number of A-parts nor decreases the number of segments relative
to either original. We omit the details.

Lemma 5 The merge step requires O(k) time

Proof: Invariant (6) implies that a window pair can only require merging if
one of the pair intersects . Merge may be implemented by a procedure
that steps left-to-right through just the g-intersecting windows. Call the
current window WS , and test it for merging with W By Lemma 3,
a test and possnble merge at the boundary requires O(IWS |) steps. The
last g-intersected window is a special case in that it must be tested against
neighbors both left and right (WS , and W, _,_1), but Corollary 4 assures us
that the cost of the second test and merge is still only O(IWS [). Split will
have at worst tripled storage consumption for the windows tha.t intersect ¢,
so the total number of segments examined is O(k). O

Theorem 3 Run time for either insertion or deletion is O(logn + k).

Proof: After finding the first window intersected by g, in O(log n) time, the
three steps edit, split, and merge suffice to insert or delete a segment from
W(S), and each has been shown to be O(k). O

167

168

algorithm domain storage update query
[lo,h3) time time
naive R,R) 06(n) 6(1) O(n)
static filtering search[2] [R,R) 6(n) O(n) O(logn + k)
static interval tree [U,®) O(n+N) O(ogN +logn) O(logN +k)
static segment tree [U,U) O(nlogN) O(logN +logn) O(logN +k)
dynamic interval tree[3] [R,R) 6(n) O(logn) O(logn + k)
dynamic segment tree[3] [R,R) 6(n) O(logn) O(logn + k)
dynamic filtering search [R,R) 6(n) O(logn + k) O(logn + k)

Table 1: Synopsis of overlap reporting algorithms.

5 Related work

The static interval tree[3, 4] and static segment tree[3] algorithms require a
data structure proportional in size to the fixed domain from which endpoints
are chosen, but allow a segment bounded by any two of those endpoints to be
inserted or deleted at moderate cost. Chazelle’s overlap reporting algorithm
using filtering search is more restrictive yet, requiring the set of segments to
be static. The dynamic interval tree and dynamic segment tree[3] algorithms,
and the filtering search algorithm of this paper, are entirely dynamic.

Table (1) summarizes the essential features of the various algorithms.
For all algorithms, n is the number of stored segments. The static tree
algorithms require a finite U C ®; let N = |U|. For queries, k is the number
of segments reported; for updates k is the number of segments intersected
by a newly updated element.

The update times of dynamic interval and dynamic segment tree search
do better that of dynamic filtering by the linear term in k; however, this is
unimportant for some applications. Consider that some number of queries
must be performed (since they are the only way to extract information from
the data structure), at cost O(logn + k) for either algorithm. If the total
cost of the queries is proportional to dynamic filtering search’s total cost for
updates, then query dominates the running time of either algorithm, which
will differ by only a constant factor. This is indeed the case for at least
one VLSI design-rule checking application[4], in which each segment to be
inserted is first used to query those already stored.

6 Applications

Dynamic interval or segment trees are not trivial to implement [3]. Static
interval and segment trees are simpler, but require a separate pre-processing
step in which the tree is initialized with the finite set of allowable endpomts
Dynamic filtering search suffers from neither of these drawbacks.

Preparata and Shamos[4] describe applications of interval overlap query
to problems in design-rule checking of VLSI circuits and concurrent access to
databases. Dynamic filtering search may offer solutions that are simpler than
the tree-based algorithms described there and have the same computational
complexity.

A key idea from filtering search, flattening the data structure in propor-
tion to the volume of output of a query, has been applied to static segment
trees in a VLSI application by Bonapace and Lo[1]. Again, a solution based
on dynamic filtering search might offer a practical improvement.

7 Acknowledgements

The author would like to thank Stephen Harrison and John Hershberger of
Digital’s Systems Research Center for their thoughtful comments.

References

(1] Bonapace, C.R. and Lo, C. An O(nlogm) Algorithm for VLSI Design Rule
Checking, Proceedings of the 26th ACM/IEEE Design Automation Conference,
1989, pp. 503-507.

[2] Chazelle, B. Filtering Search: A New Approach to Query-Answering, SIAM
J. on Comp., no. 15, 1986, pp. 703-724.

[3] Mehlhorn, K. Multi-dimensional Searching and Computational Geometry,
Springer-Verlag, Berlin, 1984.

[4] Preparata, F. and Shamos, M. 1. Computational Geometry: An Introduction,
Springer-Verlag, New York, 1985.

[5] Pugh, W. Skip Lists: A Probabilistic Alternative to Balanced Trees, Commu-
nications of the ACM, Vol. 33, no. 6, June 1990, pp. 668-676.

[6] Pugh, W. A Skip List Cookbook, Tech. Rep. CS-TR-2286.1, Dept. of Com-
puter Science, Univ. of Maryland, College Park, MD, July 1989.

169

